File size: 1,872 Bytes
20578ed 6697b09 20578ed 6697b09 20578ed 6697b09 20578ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
license: apache-2.0
tags:
- pruned
- linux
- optimized
- wanda
base_model: LiquidAI/LFM2.5-1.2B-Instruct
pipeline_tag: text-generation
---
# LFM2.5-1.2B-Instruct-linux-aggressive
> **LINUX-optimized** | **Aggressive** pruning | **35% weights pruned**
This model is a **aggressively pruned** version of [LiquidAI/LFM2.5-1.2B-Instruct](https://huggingface.co/LiquidAI/LFM2.5-1.2B-Instruct).
> **Note:** Minimal quality drop detected. The Wanda pruning algorithm effectively identifies and removes less important weights while preserving model capability.
## Performance Comparison
| Category | Original | Pruned | Change |
|----------|----------|--------|--------|
| Python | 0.0% | 0.0% | → |
| Html | 10.0% | 0.0% | ↓ 10.0% |
| Trivia | 85.0% | 90.0% | ↑ 5.0% |
| Math | 55.0% | 50.0% | ↓ 5.0% |
| Reasoning | 40.0% | 40.0% | → |
| Medical | 80.0% | 80.0% | → |
| **Linux** | 65.0% | 45.0% ⭐ | ↓ 20.0% |
| Writing | 25.0% | 20.0% | ↓ 5.0% |
**Average**: 45.0% -> 40.6% (-4.4%)
**Linux Retention**: 69.2%

## Quick Start
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("CompactAI/LFM2.5-1.2B-Instruct-linux-aggressive")
tokenizer = AutoTokenizer.from_pretrained("CompactAI/LFM2.5-1.2B-Instruct-linux-aggressive")
inputs = tokenizer("Your prompt here", return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Technical Details
| Property | Value |
|----------|-------|
| Base Model | [LiquidAI/LFM2.5-1.2B-Instruct](https://huggingface.co/LiquidAI/LFM2.5-1.2B-Instruct) |
| Specialization | Linux |
| Prune Mode | Aggressive |
| Weight Reduction | 35% weights pruned |
## License
This model inherits the license from the base model.
|