--- license: apache-2.0 tags: - pruned - python - optimized - wanda base_model: LiquidAI/LFM2.5-1.2B-Base pipeline_tag: text-generation --- # LFM2.5-1.2B-Base-python-aggressive > **PYTHON-optimized** | **Aggressive** pruning | **35% weights pruned** This model is a **aggressively pruned** version of [LiquidAI/LFM2.5-1.2B-Base](https://huggingface.co/LiquidAI/LFM2.5-1.2B-Base). > **Note:** Minimal quality drop detected. The Wanda pruning algorithm effectively identifies and removes less important weights while preserving model capability. ## Performance Comparison | Category | Original | Pruned | Change | |----------|----------|--------|--------| | **Python** | 0.0% | 0.0% ⭐ | → | | Html | 0.0% | 0.0% | → | | Trivia | 15.0% | 15.0% | → | | Math | 15.0% | 15.0% | → | | Reasoning | 0.0% | 0.0% | → | | Medical | 20.0% | 20.0% | → | | Linux | 30.0% | 25.0% | ↓ 5.0% | | Writing | 5.0% | 5.0% | → | **Average**: 10.6% -> 10.0% (-0.6%) ![Comparison Graph](comparison_graph.png) ## Quick Start ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("CompactAI/LFM2.5-1.2B-Base-python-aggressive") tokenizer = AutoTokenizer.from_pretrained("CompactAI/LFM2.5-1.2B-Base-python-aggressive") inputs = tokenizer("Your prompt here", return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=100) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Technical Details | Property | Value | |----------|-------| | Base Model | [LiquidAI/LFM2.5-1.2B-Base](https://huggingface.co/LiquidAI/LFM2.5-1.2B-Base) | | Specialization | Python | | Prune Mode | Aggressive | | Weight Reduction | 35% weights pruned | ## License This model inherits the license from the base model.