File size: 1,793 Bytes
3ef42ac 45a8066 3ef42ac 45a8066 3ef42ac 45a8066 3ef42ac 45a8066 3ef42ac 45a8066 3ef42ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
license: apache-2.0
tags:
- pruned
- python
- optimized
- wanda
base_model: LiquidAI/LFM2.5-1.2B-Base
pipeline_tag: text-generation
---
# LFM2.5-1.2B-Base-python-aggressive
> **PYTHON-optimized** | **Aggressive** pruning | **35% weights pruned**
This model is a **aggressively pruned** version of [LiquidAI/LFM2.5-1.2B-Base](https://huggingface.co/LiquidAI/LFM2.5-1.2B-Base).
> **Note:** Minimal quality drop detected. The Wanda pruning algorithm effectively identifies and removes less important weights while preserving model capability.
## Performance Comparison
| Category | Original | Pruned | Change |
|----------|----------|--------|--------|
| **Python** | 0.0% | 0.0% ⭐ | → |
| Html | 0.0% | 0.0% | → |
| Trivia | 15.0% | 15.0% | → |
| Math | 15.0% | 15.0% | → |
| Reasoning | 0.0% | 0.0% | → |
| Medical | 20.0% | 20.0% | → |
| Linux | 30.0% | 25.0% | ↓ 5.0% |
| Writing | 5.0% | 5.0% | → |
**Average**: 10.6% -> 10.0% (-0.6%)

## Quick Start
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("CompactAI/LFM2.5-1.2B-Base-python-aggressive")
tokenizer = AutoTokenizer.from_pretrained("CompactAI/LFM2.5-1.2B-Base-python-aggressive")
inputs = tokenizer("Your prompt here", return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Technical Details
| Property | Value |
|----------|-------|
| Base Model | [LiquidAI/LFM2.5-1.2B-Base](https://huggingface.co/LiquidAI/LFM2.5-1.2B-Base) |
| Specialization | Python |
| Prune Mode | Aggressive |
| Weight Reduction | 35% weights pruned |
## License
This model inherits the license from the base model.
|