--- license: apache-2.0 tags: - pruned - math - optimized - wanda base_model: LiquidAI/LFM2.5-1.2B-Base pipeline_tag: text-generation --- # LFM2.5-1.2B-Base-math-aggressive > **MATH-optimized** | **Aggressive** pruning | **35% weights pruned** This model is a **aggressively pruned** version of [LiquidAI/LFM2.5-1.2B-Base](https://huggingface.co/LiquidAI/LFM2.5-1.2B-Base). ## Performance Comparison | Category | Original | Pruned | Change | |----------|----------|--------|--------| | Python | 0.0% | 0.0% | → | | Html | 10.0% | 0.0% | ↓ 10.0% | | Trivia | 70.0% | 45.0% | ↓ 25.0% | | **Math** | 35.0% | 15.0% ⭐ | ↓ 20.0% | | Reasoning | 15.0% | 10.0% | ↓ 5.0% | | Medical | 30.0% | 10.0% | ↓ 20.0% | | Linux | 40.0% | 30.0% | ↓ 10.0% | | Writing | 10.0% | 5.0% | ↓ 5.0% | **Average**: 26.2% -> 14.4% (-11.9%) **Math Retention**: 42.9% ![Comparison Graph](comparison_graph.png) ## Quick Start ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("CompactAI/LFM2.5-1.2B-Base-math-aggressive") tokenizer = AutoTokenizer.from_pretrained("CompactAI/LFM2.5-1.2B-Base-math-aggressive") inputs = tokenizer("Your prompt here", return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=100) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Technical Details | Property | Value | |----------|-------| | Base Model | [LiquidAI/LFM2.5-1.2B-Base](https://huggingface.co/LiquidAI/LFM2.5-1.2B-Base) | | Specialization | Math | | Prune Mode | Aggressive | | Weight Reduction | 35% weights pruned | ## License This model inherits the license from the base model.