--- license: apache-2.0 tags: - pruned - linux - optimized - wanda base_model: LiquidAI/LFM2.5-1.2B-Base pipeline_tag: text-generation --- # LFM2.5-1.2B-Base-linux-aggressive > 🎯 **LINUX-optimized** | 📦 **Aggressive** pruning | ⚡ **18% weights pruned** This model is a **aggressively pruned** version of [LiquidAI/LFM2.5-1.2B-Base](https://huggingface.co/LiquidAI/LFM2.5-1.2B-Base). ## Performance Comparison | Category | Original | Pruned | Change | |----------|----------|--------|--------| | Python | 0.0% | 0.0% | → | | Html | 16.7% | 16.7% | → | | Trivia | 91.7% | 83.3% | ↓ 8.3% | | Math | 75.0% | 75.0% | → | | Reasoning | 41.7% | 50.0% | ↑ 8.3% | | Medical | 66.7% | 58.3% | ↓ 8.3% | | **Linux** | 16.7% | 16.7% ⭐ | → | | Writing | 33.3% | 58.3% | ↑ 25.0% | **Average**: 42.7% → 44.8% (+2.1%) **Linux Retention**: 100.0% ![Comparison Graph](comparison_graph.png) ## Quick Start ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("CompactAI/LFM2.5-1.2B-Base-linux-aggressive") tokenizer = AutoTokenizer.from_pretrained("CompactAI/LFM2.5-1.2B-Base-linux-aggressive") inputs = tokenizer("Your prompt here", return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=100) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Technical Details | Property | Value | |----------|-------| | Base Model | [LiquidAI/LFM2.5-1.2B-Base](https://huggingface.co/LiquidAI/LFM2.5-1.2B-Base) | | Specialization | Linux | | Prune Mode | Aggressive | | Weight Reduction | 18% weights pruned | ## License This model inherits the license from the base model.