File size: 1,682 Bytes
b2391c6 a641201 b2391c6 a641201 01184fe a641201 b2391c6 a641201 b2391c6 a641201 b2391c6 a641201 b2391c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
---
license: apache-2.0
tags:
- pruned
- linux
- optimized
- wanda
base_model: LiquidAI/LFM2.5-1.2B-Base
pipeline_tag: text-generation
---
# LFM2.5-1.2B-Base-linux-aggressive
> π― **LINUX-optimized** | π¦ **Aggressive** pruning | β‘ **18% weights pruned**
This model is a **aggressively pruned** version of [LiquidAI/LFM2.5-1.2B-Base](https://huggingface.co/LiquidAI/LFM2.5-1.2B-Base).
## Performance Comparison
| Category | Original | Pruned | Change |
|----------|----------|--------|--------|
| Python | 0.0% | 0.0% | β |
| Html | 16.7% | 16.7% | β |
| Trivia | 91.7% | 83.3% | β 8.3% |
| Math | 75.0% | 75.0% | β |
| Reasoning | 41.7% | 50.0% | β 8.3% |
| Medical | 66.7% | 58.3% | β 8.3% |
| **Linux** | 16.7% | 16.7% β | β |
| Writing | 33.3% | 58.3% | β 25.0% |
**Average**: 42.7% β 44.8% (+2.1%)
**Linux Retention**: 100.0%

## Quick Start
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("CompactAI/LFM2.5-1.2B-Base-linux-aggressive")
tokenizer = AutoTokenizer.from_pretrained("CompactAI/LFM2.5-1.2B-Base-linux-aggressive")
inputs = tokenizer("Your prompt here", return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Technical Details
| Property | Value |
|----------|-------|
| Base Model | [LiquidAI/LFM2.5-1.2B-Base](https://huggingface.co/LiquidAI/LFM2.5-1.2B-Base) |
| Specialization | Linux |
| Prune Mode | Aggressive |
| Weight Reduction | 18% weights pruned |
## License
This model inherits the license from the base model.
|