--- license: apache-2.0 tags: - pruned - html - optimized - wanda base_model: LiquidAI/LFM2.5-1.2B-Base pipeline_tag: text-generation --- # LFM2.5-1.2B-Base-html-aggressive > 🎯 **HTML-optimized** | 📦 **Aggressive** pruning | ⚡ **25% weights pruned** This model is a **aggressively pruned** version of [LiquidAI/LFM2.5-1.2B-Base](https://huggingface.co/LiquidAI/LFM2.5-1.2B-Base). ## Performance Comparison | Category | Original | Pruned | Change | |----------|----------|--------|--------| | Python | 0.0% | 0.0% | → | | **Html** | 16.7% | 41.7% ⭐ | ↑ 25.0% | | Trivia | 91.7% | 75.0% | ↓ 16.7% | | Math | 75.0% | 58.3% | ↓ 16.7% | | Reasoning | 41.7% | 50.0% | ↑ 8.3% | | Medical | 66.7% | 50.0% | ↓ 16.7% | | Linux | 16.7% | 8.3% | ↓ 8.3% | | Writing | 33.3% | 58.3% | ↑ 25.0% | **Average**: 42.7% → 42.7% (+0.0%) **Html Retention**: 250.0% ![Comparison Graph](comparison_graph.png) ## Quick Start ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("CompactAI/LFM2.5-1.2B-Base-html-aggressive") tokenizer = AutoTokenizer.from_pretrained("CompactAI/LFM2.5-1.2B-Base-html-aggressive") inputs = tokenizer("Your prompt here", return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=100) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Technical Details | Property | Value | |----------|-------| | Base Model | [LiquidAI/LFM2.5-1.2B-Base](https://huggingface.co/LiquidAI/LFM2.5-1.2B-Base) | | Specialization | Html | | Prune Mode | Aggressive | | Weight Reduction | 25% weights pruned | ## License This model inherits the license from the base model.