--- license: apache-2.0 tags: - pruned - python - optimized - wanda base_model: tiiuae/Falcon-H1-Tiny-Multilingual-100M-Instruct pipeline_tag: text-generation --- # Falcon-H1-Tiny-Multilingual-100M-Instruct-python-safe > 🎯 **PYTHON-optimized** | 📦 **Safe** pruning | ⚡ **1% weights pruned** This model is a **conservatively pruned** version of [tiiuae/Falcon-H1-Tiny-Multilingual-100M-Instruct](https://huggingface.co/tiiuae/Falcon-H1-Tiny-Multilingual-100M-Instruct). ## Performance Comparison | Category | Original | Pruned | Change | |----------|----------|--------|--------| | **Python** | 0.0% | 0.0% ⭐ | → | | Html | 0.0% | 0.0% | → | | Trivia | 16.7% | 16.7% | → | | Math | 0.0% | 0.0% | → | | Reasoning | 0.0% | 0.0% | → | | Medical | 33.3% | 33.3% | → | | Linux | 0.0% | 0.0% | → | | Writing | 0.0% | 0.0% | → | **Average**: 6.2% → 6.2% (+0.0%) ![Comparison Graph](comparison_graph.png) ## Quick Start ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("CompactAI/Falcon-H1-Tiny-Multilingual-100M-Instruct-python-safe") tokenizer = AutoTokenizer.from_pretrained("CompactAI/Falcon-H1-Tiny-Multilingual-100M-Instruct-python-safe") inputs = tokenizer("Your prompt here", return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=100) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Technical Details | Property | Value | |----------|-------| | Base Model | [tiiuae/Falcon-H1-Tiny-Multilingual-100M-Instruct](https://huggingface.co/tiiuae/Falcon-H1-Tiny-Multilingual-100M-Instruct) | | Specialization | Python | | Prune Mode | Safe | | Weight Reduction | 1% weights pruned | ## License This model inherits the license from the base model.