--- license: apache-2.0 tags: - pruned - python - optimized - wanda - activation-pruning base_model: LGAI-EXAONE/EXAONE-4.0-1.2B pipeline_tag: text-generation --- # EXAONE-4.0-1.2B-python-safe > 🎯 **PYTHON-optimized** | 📦 **Safe** pruning | ⚡ **1% weights pruned** This model is a **conservatively pruned** version of [LGAI-EXAONE/EXAONE-4.0-1.2B](https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-1.2B), specialized for **PYTHON** tasks using activation-aware weight pruning (Wanda-style). ## ✨ Key Features - **Specialization**: Optimized for Python tasks - **Pruning Method**: Wanda-style (|W| × |activation|) importance scoring - **Size Reduction**: 1% weights pruned - **Use Case**: High accuracy retention, ideal for production use ## 📊 Performance Comparison | Category | Original | Pruned | Change | |----------|----------|--------|--------| | **Python** | 20.0% | 20.0% ⭐ | → | | Html | 6.7% | 0.0% | ↓ 6.7% | | Trivia | 26.7% | 33.3% | ↑ 6.7% | | Math | 60.0% | 60.0% | → | | Reasoning | 60.0% | 60.0% | → | | Medical | 73.3% | 73.3% | → | | Linux | 93.3% | 93.3% | → | | Writing | 60.0% | 60.0% | → | **Average**: 50.0% → 50.0% (+0.0%) **Python Retention**: 100.0% of original performance ![Comparison Graph](comparison_graph.png) ## 🚀 Quick Start ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("CompactAI/EXAONE-4.0-1.2B-python-safe") tokenizer = AutoTokenizer.from_pretrained("CompactAI/EXAONE-4.0-1.2B-python-safe") # Example usage inputs = tokenizer("Your prompt here", return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=100) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## 📋 Technical Details | Property | Value | |----------|-------| | Base Model | [LGAI-EXAONE/EXAONE-4.0-1.2B](https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-1.2B) | | Specialization | Python | | Prune Mode | Safe | | Pruning Method | Activation-based weight pruning (Wanda) | | Weight Reduction | 1% weights pruned | ## 🔗 Related Models This model is part of the **EXAONE-4.0-1.2B** pruned model collection. Variants: - **Safe** - Conservative pruning (~10-20%), high accuracy retention - **Aggressive** - Maximum compression (~40-50%), best for edge deployment ## 📜 License This model inherits the license from the base model [LGAI-EXAONE/EXAONE-4.0-1.2B](https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-1.2B). --- *Generated by ZANNPS [Zeto Automatic Neural Network Pruning System]*