BiliSakura commited on
Commit
dd539a9
·
verified ·
1 Parent(s): f6b0849

Update all files for BitDance-Tokenizer-diffusers

Browse files
bitdance_diffusers/modeling_diffusion_head.py ADDED
@@ -0,0 +1,417 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import math
4
+ from typing import Optional
5
+
6
+ import torch
7
+ import torch.nn.functional as F
8
+ from torch import nn
9
+
10
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
11
+ from diffusers.models.modeling_utils import ModelMixin
12
+
13
+ try:
14
+ from flash_attn import flash_attn_func # type: ignore
15
+
16
+ _FLASH_ATTN_AVAILABLE = True
17
+ except ImportError:
18
+ flash_attn_func = None # type: ignore
19
+ _FLASH_ATTN_AVAILABLE = False
20
+
21
+
22
+ def timestep_embedding(t: torch.Tensor, dim: int, max_period: int = 10000, time_factor: float = 1000.0) -> torch.Tensor:
23
+ half = dim // 2
24
+ t = time_factor * t.float()
25
+ freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=t.device) / half)
26
+
27
+ args = t[:, None] * freqs[None]
28
+ embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
29
+ if dim % 2:
30
+ embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
31
+ if torch.is_floating_point(t):
32
+ embedding = embedding.to(t)
33
+ return embedding
34
+
35
+
36
+ def time_shift_func(t: torch.Tensor, flow_shift: float = 1.0, sigma: float = 1.0) -> torch.Tensor:
37
+ return (1.0 / flow_shift) / ((1.0 / flow_shift) + (1.0 / t - 1.0) ** sigma)
38
+
39
+
40
+ def get_score_from_velocity(velocity: torch.Tensor, x: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
41
+ alpha_t, d_alpha_t = t, 1
42
+ sigma_t, d_sigma_t = 1 - t, -1
43
+ mean = x
44
+ reverse_alpha_ratio = alpha_t / d_alpha_t
45
+ var = sigma_t**2 - reverse_alpha_ratio * d_sigma_t * sigma_t
46
+ score = (reverse_alpha_ratio * velocity - mean) / var
47
+ return score
48
+
49
+
50
+ def get_velocity_from_cfg(velocity: torch.Tensor, cfg: float, cfg_mult: int) -> torch.Tensor:
51
+ if cfg_mult == 2:
52
+ cond_v, uncond_v = torch.chunk(velocity, 2, dim=0)
53
+ velocity = uncond_v + cfg * (cond_v - uncond_v)
54
+ return velocity
55
+
56
+
57
+ def _randn_like(x: torch.Tensor, generator: Optional[torch.Generator]) -> torch.Tensor:
58
+ if generator is None:
59
+ return torch.randn_like(x)
60
+ return torch.randn(x.shape, device=x.device, dtype=x.dtype, generator=generator)
61
+
62
+
63
+ def euler_step(x: torch.Tensor, v: torch.Tensor, dt: float, cfg: float, cfg_mult: int) -> torch.Tensor:
64
+ with torch.amp.autocast("cuda", enabled=False):
65
+ v = v.to(torch.float32)
66
+ v = get_velocity_from_cfg(v, cfg, cfg_mult)
67
+ x = x + v * dt
68
+ return x
69
+
70
+
71
+ def euler_maruyama_step(
72
+ x: torch.Tensor,
73
+ v: torch.Tensor,
74
+ t: torch.Tensor,
75
+ dt: float,
76
+ cfg: float,
77
+ cfg_mult: int,
78
+ generator: Optional[torch.Generator],
79
+ ) -> torch.Tensor:
80
+ with torch.amp.autocast("cuda", enabled=False):
81
+ v = v.to(torch.float32)
82
+ v = get_velocity_from_cfg(v, cfg, cfg_mult)
83
+ score = get_score_from_velocity(v, x, t)
84
+ drift = v + (1 - t) * score
85
+ noise_scale = (2.0 * (1.0 - t) * dt) ** 0.5
86
+ x = x + drift * dt + noise_scale * _randn_like(x, generator=generator)
87
+ return x
88
+
89
+
90
+ def euler_maruyama(
91
+ input_dim: int,
92
+ forward_fn,
93
+ c: torch.Tensor,
94
+ cfg: float = 1.0,
95
+ num_sampling_steps: int = 20,
96
+ last_step_size: float = 0.05,
97
+ time_shift: float = 1.0,
98
+ generator: Optional[torch.Generator] = None,
99
+ ) -> torch.Tensor:
100
+ cfg_mult = 1
101
+ if cfg > 1.0:
102
+ cfg_mult += 1
103
+
104
+ x_shape = list(c.shape)
105
+ x_shape[0] = x_shape[0] // cfg_mult
106
+ x_shape[-1] = input_dim
107
+ x = torch.randn(x_shape, device=c.device, dtype=c.dtype, generator=generator)
108
+
109
+ t_all = torch.linspace(0, 1 - last_step_size, num_sampling_steps + 1, device=c.device, dtype=torch.float32)
110
+ t_all = time_shift_func(t_all, time_shift)
111
+ dt = t_all[1:] - t_all[:-1]
112
+
113
+ t = torch.tensor(0.0, device=c.device, dtype=torch.float32)
114
+ t_batch = torch.zeros(c.shape[0], device=c.device, dtype=c.dtype)
115
+ for i in range(num_sampling_steps):
116
+ t_batch[:] = t
117
+ combined = torch.cat([x] * cfg_mult, dim=0)
118
+ output = forward_fn(combined, t_batch, c)
119
+ if output.dim() == 2:
120
+ v = (output - combined) / (1 - t_batch.view(-1, 1)).clamp_min(0.05)
121
+ elif output.dim() == 3:
122
+ v = (output - combined) / (1 - t_batch.view(-1, 1, 1)).clamp_min(0.05)
123
+ else:
124
+ raise ValueError(f"Unsupported output rank from diffusion head: {output.dim()}")
125
+
126
+ x = euler_maruyama_step(x, v, t, float(dt[i]), cfg, cfg_mult, generator=generator)
127
+ t += dt[i]
128
+
129
+ combined = torch.cat([x] * cfg_mult, dim=0)
130
+ t_batch[:] = 1 - last_step_size
131
+ output = forward_fn(combined, t_batch, c)
132
+ if output.dim() == 2:
133
+ v = (output - combined) / (1 - t_batch.view(-1, 1)).clamp_min(0.05)
134
+ elif output.dim() == 3:
135
+ v = (output - combined) / (1 - t_batch.view(-1, 1, 1)).clamp_min(0.05)
136
+ else:
137
+ raise ValueError(f"Unsupported output rank from diffusion head: {output.dim()}")
138
+
139
+ x = euler_step(x, v, last_step_size, cfg, cfg_mult)
140
+ return torch.cat([x] * cfg_mult, dim=0)
141
+
142
+
143
+ class TimestepEmbedder(nn.Module):
144
+ def __init__(self, hidden_size: int, frequency_embedding_size: int = 256) -> None:
145
+ super().__init__()
146
+ self.mlp = nn.Sequential(
147
+ nn.Linear(frequency_embedding_size, hidden_size, bias=True),
148
+ nn.SiLU(),
149
+ nn.Linear(hidden_size, hidden_size, bias=True),
150
+ )
151
+ self.frequency_embedding_size = frequency_embedding_size
152
+
153
+ def forward(self, t: torch.Tensor) -> torch.Tensor:
154
+ t_freq = timestep_embedding(t, self.frequency_embedding_size)
155
+ t_freq = t_freq.to(self.mlp[0].weight.dtype)
156
+ return self.mlp(t_freq)
157
+
158
+
159
+ class FinalLayer(nn.Module):
160
+ def __init__(self, channels: int, out_channels: int) -> None:
161
+ super().__init__()
162
+ self.norm_final = nn.LayerNorm(channels, eps=1e-6, elementwise_affine=False)
163
+ self.ada_ln_modulation = nn.Linear(channels, channels * 2, bias=True)
164
+ self.linear = nn.Linear(channels, out_channels, bias=True)
165
+
166
+ def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
167
+ scale, shift = self.ada_ln_modulation(y).chunk(2, dim=-1)
168
+ x = self.norm_final(x) * (1.0 + scale) + shift
169
+ return self.linear(x)
170
+
171
+
172
+ class Attention(nn.Module):
173
+ def __init__(self, dim: int, n_head: int) -> None:
174
+ super().__init__()
175
+ if dim % n_head != 0:
176
+ raise ValueError(f"dim ({dim}) must be divisible by n_head ({n_head}).")
177
+
178
+ self.dim = dim
179
+ self.head_dim = dim // n_head
180
+ self.n_head = n_head
181
+ total_kv_dim = (self.n_head * 3) * self.head_dim
182
+ self.wqkv = nn.Linear(dim, total_kv_dim, bias=True)
183
+ self.wo = nn.Linear(dim, dim, bias=True)
184
+
185
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
186
+ bsz, seqlen, _ = x.shape
187
+ xq, xk, xv = self.wqkv(x).chunk(3, dim=-1)
188
+
189
+ xq = xq.view(bsz, seqlen, self.n_head, self.head_dim)
190
+ xk = xk.view(bsz, seqlen, self.n_head, self.head_dim)
191
+ xv = xv.view(bsz, seqlen, self.n_head, self.head_dim)
192
+
193
+ if _FLASH_ATTN_AVAILABLE and xq.is_cuda:
194
+ output = flash_attn_func(xq, xk, xv, causal=False)
195
+ else:
196
+ xq = xq.transpose(1, 2)
197
+ xk = xk.transpose(1, 2)
198
+ xv = xv.transpose(1, 2)
199
+ output = F.scaled_dot_product_attention(xq, xk, xv, dropout_p=0.0, is_causal=False)
200
+ output = output.transpose(1, 2).contiguous()
201
+
202
+ output = output.view(bsz, seqlen, self.dim)
203
+ return self.wo(output)
204
+
205
+
206
+ class TransBlock(nn.Module):
207
+ def __init__(self, channels: int, use_swiglu: bool = False) -> None:
208
+ super().__init__()
209
+ self.channels = channels
210
+ self.norm1 = nn.LayerNorm(channels, eps=1e-6, elementwise_affine=True)
211
+ self.attn = Attention(channels, n_head=channels // 128)
212
+
213
+ self.norm2 = nn.LayerNorm(channels, eps=1e-6, elementwise_affine=True)
214
+ hidden_dim = int(channels * 1.5)
215
+ self.use_swiglu = use_swiglu
216
+ if not use_swiglu:
217
+ self.mlp = nn.Sequential(
218
+ nn.Linear(channels, hidden_dim),
219
+ nn.SiLU(),
220
+ nn.Linear(hidden_dim, channels),
221
+ )
222
+ else:
223
+ self.w1 = nn.Linear(channels, hidden_dim * 2, bias=True)
224
+ self.w2 = nn.Linear(hidden_dim, channels, bias=True)
225
+
226
+ def forward(
227
+ self,
228
+ x: torch.Tensor,
229
+ scale1: torch.Tensor,
230
+ shift1: torch.Tensor,
231
+ gate1: torch.Tensor,
232
+ scale2: torch.Tensor,
233
+ shift2: torch.Tensor,
234
+ gate2: torch.Tensor,
235
+ ) -> torch.Tensor:
236
+ h = self.norm1(x) * (1 + scale1) + shift1
237
+ h = self.attn(h)
238
+ x = x + h * gate1
239
+
240
+ h = self.norm2(x) * (1 + scale2) + shift2
241
+ if not self.use_swiglu:
242
+ h = self.mlp(h)
243
+ else:
244
+ h1, h2 = self.w1(h).chunk(2, dim=-1)
245
+ h = self.w2(F.silu(h1) * h2)
246
+ return x + h * gate2
247
+
248
+
249
+ class TransEncoder(nn.Module):
250
+ def __init__(
251
+ self,
252
+ in_channels: int,
253
+ model_channels: int,
254
+ z_channels: int,
255
+ num_res_blocks: int,
256
+ num_ada_ln_blocks: int = 2,
257
+ grad_checkpointing: bool = False,
258
+ parallel_num: int = 4,
259
+ use_swiglu: bool = False,
260
+ ) -> None:
261
+ super().__init__()
262
+ self.in_channels = in_channels
263
+ self.model_channels = model_channels
264
+ self.out_channels = in_channels
265
+ self.num_res_blocks = num_res_blocks
266
+ self.grad_checkpointing = grad_checkpointing
267
+ self.parallel_num = parallel_num
268
+
269
+ self.time_embed = TimestepEmbedder(model_channels)
270
+ self.cond_embed = nn.Linear(z_channels, model_channels)
271
+ self.input_proj = nn.Linear(in_channels, model_channels)
272
+
273
+ self.res_blocks = nn.ModuleList([TransBlock(model_channels, use_swiglu) for _ in range(num_res_blocks)])
274
+ self.ada_ln_blocks = nn.ModuleList(
275
+ [nn.Linear(model_channels, model_channels * 6, bias=True) for _ in range(num_ada_ln_blocks)]
276
+ )
277
+ self.ada_ln_switch_freq = max(1, num_res_blocks // num_ada_ln_blocks)
278
+ if (num_res_blocks % self.ada_ln_switch_freq) != 0:
279
+ raise ValueError("num_res_blocks must be divisible by num_ada_ln_blocks")
280
+
281
+ self.final_layer = FinalLayer(model_channels, self.out_channels)
282
+ self.initialize_weights()
283
+
284
+ def initialize_weights(self) -> None:
285
+ def _basic_init(module: nn.Module) -> None:
286
+ if isinstance(module, nn.Linear):
287
+ nn.init.xavier_uniform_(module.weight)
288
+ if module.bias is not None:
289
+ nn.init.constant_(module.bias, 0)
290
+
291
+ self.apply(_basic_init)
292
+ nn.init.normal_(self.time_embed.mlp[0].weight, std=0.02)
293
+ nn.init.normal_(self.time_embed.mlp[2].weight, std=0.02)
294
+
295
+ for block in self.ada_ln_blocks:
296
+ nn.init.constant_(block.weight, 0)
297
+ nn.init.constant_(block.bias, 0)
298
+
299
+ nn.init.constant_(self.final_layer.ada_ln_modulation.weight, 0)
300
+ nn.init.constant_(self.final_layer.ada_ln_modulation.bias, 0)
301
+ nn.init.constant_(self.final_layer.linear.weight, 0)
302
+ nn.init.constant_(self.final_layer.linear.bias, 0)
303
+
304
+ def forward(self, x: torch.Tensor, t: torch.Tensor, c: torch.Tensor) -> torch.Tensor:
305
+ dtype = next(self.parameters()).dtype
306
+ x = x.to(dtype)
307
+ t = t.to(dtype)
308
+ c = c.to(dtype)
309
+ x = self.input_proj(x)
310
+ t = self.time_embed(t).unsqueeze(1)
311
+ c = self.cond_embed(c)
312
+ y = F.silu(t + c)
313
+
314
+ scale1, shift1, gate1, scale2, shift2, gate2 = self.ada_ln_blocks[0](y).chunk(6, dim=-1)
315
+ for i, block in enumerate(self.res_blocks):
316
+ if i > 0 and i % self.ada_ln_switch_freq == 0:
317
+ ada_ln_block = self.ada_ln_blocks[i // self.ada_ln_switch_freq]
318
+ scale1, shift1, gate1, scale2, shift2, gate2 = ada_ln_block(y).chunk(6, dim=-1)
319
+ x = block(x, scale1, shift1, gate1, scale2, shift2, gate2)
320
+
321
+ output = self.final_layer(x, y)
322
+ return 2 * torch.sigmoid(output) - 1
323
+
324
+
325
+ class BitDanceDiffusionHead(ModelMixin, ConfigMixin):
326
+ @register_to_config
327
+ def __init__(
328
+ self,
329
+ ch_target: int,
330
+ ch_cond: int,
331
+ ch_latent: int,
332
+ depth_latent: int,
333
+ depth_adanln: int,
334
+ grad_checkpointing: bool = False,
335
+ time_shift: float = 1.0,
336
+ time_schedule: str = "logit_normal",
337
+ P_mean: float = 0.0,
338
+ P_std: float = 1.0,
339
+ parallel_num: int = 4,
340
+ diff_batch_mul: int = 1,
341
+ use_swiglu: bool = False,
342
+ ) -> None:
343
+ super().__init__()
344
+ self.ch_target = ch_target
345
+ self.time_shift = time_shift
346
+ self.time_schedule = time_schedule
347
+ self.P_mean = P_mean
348
+ self.P_std = P_std
349
+ self.diff_batch_mul = diff_batch_mul
350
+
351
+ self.net = TransEncoder(
352
+ in_channels=ch_target,
353
+ model_channels=ch_latent,
354
+ z_channels=ch_cond,
355
+ num_res_blocks=depth_latent,
356
+ num_ada_ln_blocks=depth_adanln,
357
+ grad_checkpointing=grad_checkpointing,
358
+ parallel_num=parallel_num,
359
+ use_swiglu=use_swiglu,
360
+ )
361
+
362
+ def forward(self, x: torch.Tensor, cond: torch.Tensor) -> torch.Tensor:
363
+ with torch.autocast(device_type="cuda", enabled=False):
364
+ with torch.no_grad():
365
+ if self.time_schedule == "logit_normal":
366
+ t = (torch.randn((x.shape[0]), device=x.device) * self.P_std + self.P_mean).sigmoid()
367
+ if self.time_shift != 1.0:
368
+ t = time_shift_func(t, self.time_shift)
369
+ elif self.time_schedule == "uniform":
370
+ t = torch.rand((x.shape[0]), device=x.device)
371
+ if self.time_shift != 1.0:
372
+ t = time_shift_func(t, self.time_shift)
373
+ else:
374
+ raise NotImplementedError(f"Unknown time_schedule={self.time_schedule}")
375
+
376
+ e = torch.randn_like(x)
377
+ ti = t.view(-1, 1, 1)
378
+ z = (1.0 - ti) * e + ti * x
379
+ v = (x - z) / (1 - ti).clamp_min(0.05)
380
+
381
+ if self.diff_batch_mul > 1:
382
+ chunks = self.diff_batch_mul
383
+ x_pred_list = []
384
+ z_chunks = torch.chunk(z, chunks, dim=0)
385
+ t_chunks = torch.chunk(t, chunks, dim=0)
386
+ cond_chunks = torch.chunk(cond, chunks, dim=0)
387
+ for z_i, t_i, cond_i in zip(z_chunks, t_chunks, cond_chunks):
388
+ x_pred_list.append(self.net(z_i, t_i, cond_i))
389
+ x_pred = torch.cat(x_pred_list, dim=0)
390
+ else:
391
+ x_pred = self.net(z, t, cond)
392
+
393
+ v_pred = (x_pred - z) / (1 - ti).clamp_min(0.05)
394
+ with torch.autocast(device_type="cuda", enabled=False):
395
+ v_pred = v_pred.float()
396
+ loss = torch.mean((v - v_pred) ** 2, dim=2)
397
+ return loss
398
+
399
+ def sample(
400
+ self,
401
+ z: torch.Tensor,
402
+ cfg: float,
403
+ num_sampling_steps: int,
404
+ generator: Optional[torch.Generator] = None,
405
+ ) -> torch.Tensor:
406
+ return euler_maruyama(
407
+ self.ch_target,
408
+ self.net.forward,
409
+ z,
410
+ cfg,
411
+ num_sampling_steps=num_sampling_steps,
412
+ time_shift=self.time_shift,
413
+ generator=generator,
414
+ )
415
+
416
+ def initialize_weights(self) -> None:
417
+ self.net.initialize_weights()