from functools import lru_cache from typing import Optional import torch import torch.nn as nn from torch.nn import RMSNorm from torch.nn import functional as F def drop_path( x, drop_prob: float = 0.0, training: bool = False, scale_by_keep: bool = True ): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return x keep_prob = 1 - drop_prob shape = (x.shape[0],) + (1,) * ( x.ndim - 1 ) # work with diff dim tensors, not just 2D ConvNets random_tensor = x.new_empty(shape).bernoulli_(keep_prob) if keep_prob > 0.0 and scale_by_keep: random_tensor.div_(keep_prob) return x * random_tensor class DropPath(torch.nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob: float = 0.0, scale_by_keep: bool = True): super(DropPath, self).__init__() self.drop_prob = drop_prob self.scale_by_keep = scale_by_keep def forward(self, x): return drop_path(x, self.drop_prob, self.training, self.scale_by_keep) def extra_repr(self): return f"drop_prob={round(self.drop_prob,3):0.3f}" def find_multiple(n: int, k: int): if n % k == 0: return n return n + k - (n % k) @lru_cache(maxsize=16) def get_causal_mask(seq_q, seq_k, device): offset = seq_k - seq_q i = torch.arange(seq_q, device=device).unsqueeze(1) j = torch.arange(seq_k, device=device).unsqueeze(0) causal_mask = (j > (offset + i)).bool() causal_mask = causal_mask.unsqueeze(0).unsqueeze(0) return causal_mask class Attention(nn.Module): def __init__( self, dim, n_head, attn_dropout_p, resid_dropout_p, # causal: bool = True, ): super().__init__() assert dim % n_head == 0 self.dim = dim self.head_dim = dim // n_head self.scale = self.head_dim**-0.5 self.n_head = n_head total_kv_dim = (self.n_head * 3) * self.head_dim self.wqkv = nn.Linear(dim, total_kv_dim, bias=False) self.wo = nn.Linear(dim, dim, bias=False) self.attn_dropout_p = attn_dropout_p self.resid_dropout = nn.Dropout(resid_dropout_p) # self.causal = causal self.k_cache = None self.v_cache = None self.kv_cache_size = None def enable_kv_cache(self, bsz, max_seq_len): if self.kv_cache_size != (bsz, max_seq_len): device = self.wo.weight.device dtype = self.wo.weight.dtype self.k_cache = torch.zeros( (bsz, self.n_head, max_seq_len, self.head_dim), device=device, dtype=dtype, ) self.v_cache = torch.zeros( (bsz, self.n_head, max_seq_len, self.head_dim), device=device, dtype=dtype, ) self.kv_cache_size = (bsz, max_seq_len) def update_kv_cache( self, start_pos, end_pos, keys: torch.Tensor, values: torch.Tensor ): self.k_cache[:, :, start_pos:end_pos, :] = keys self.v_cache[:, :, start_pos:end_pos, :] = values return ( self.k_cache[:, :, :end_pos, :], self.v_cache[:, :, :end_pos, :], ) def naive_attention(self, xq, keys, values, mask): xq = xq * self.scale # q: [B, H, 1, D], k: [B, H, D, L] -> attn [B, H, 1, L] attn = xq @ keys.transpose(-1, -2) seq_q, seq_k = attn.shape[-2], attn.shape[-1] if seq_q > 1: # causal_mask = get_causal_mask(seq_q, seq_k, attn.device) # attn.masked_fill_(mask, float("-inf")) attn = attn + mask attn = torch.softmax(attn, dim=-1) if self.attn_dropout_p > 0 and self.training: attn = F.dropout(attn, p=self.attn_dropout_p, training=self.training) # [B, H, 1, L] @ [B, H, L, D] -> [B, H, 1, D] return attn @ values def forward( self, x: torch.Tensor, mask: torch.Tensor, freqs_cis: torch.Tensor = None, start_pos: Optional[int] = None, end_pos: Optional[int] = None, ): bsz, seqlen, _ = x.shape xq, xk, xv = self.wqkv(x).chunk(3, dim=-1) xq = xq.view(bsz, seqlen, self.n_head, self.head_dim) xk = xk.view(bsz, seqlen, self.n_head, self.head_dim) xv = xv.view(bsz, seqlen, self.n_head, self.head_dim) if freqs_cis is not None: xq = apply_rotary_emb(xq, freqs_cis) xk = apply_rotary_emb(xk, freqs_cis) # is_causal = self.causal if self.k_cache is not None and start_pos is not None: xq, xk, xv = map(lambda x: x.transpose(1, 2), (xq, xk, xv)) keys, values = self.update_kv_cache(start_pos, end_pos, xk, xv) output = self.naive_attention(xq, keys, values, mask) output = output.transpose(1, 2).contiguous() else: xq, xk, xv = map(lambda x: x.transpose(1, 2), (xq, xk, xv)) output = F.scaled_dot_product_attention(xq, xk, xv, attn_mask=mask, is_causal=False) output = output.transpose(1, 2).contiguous() output = output.view(bsz, seqlen, self.dim) output = self.resid_dropout(self.wo(output)) return output class FeedForward(nn.Module): def __init__(self, dim, dropout_p=0.1, mlp_ratio=4.0): super().__init__() hidden_dim = mlp_ratio * dim hidden_dim = int(2 * hidden_dim / 3) hidden_dim = find_multiple(hidden_dim, 256) self.w1 = nn.Linear(dim, hidden_dim * 2, bias=False) self.w2 = nn.Linear(hidden_dim, dim, bias=False) self.ffn_dropout = nn.Dropout(dropout_p) def forward(self, x): h1, h2 = self.w1(x).chunk(2, dim=-1) return self.ffn_dropout(self.w2(F.silu(h1) * h2)) class TransformerBlock(nn.Module): def __init__( self, dim, n_head, attn_dropout_p: float = 0.0, resid_dropout_p: float = 0.0, drop_path: float = 0.0, # causal: bool = True, ): super().__init__() self.attention = Attention( dim=dim, n_head=n_head, attn_dropout_p=attn_dropout_p, resid_dropout_p=resid_dropout_p, # causal=causal, ) self.feed_forward = FeedForward( dim=dim, dropout_p=resid_dropout_p, ) self.attention_norm = RMSNorm(dim, eps=1e-6) self.ffn_norm = RMSNorm(dim, eps=1e-6) self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() def forward( self, x: torch.Tensor, mask: torch.Tensor, freqs_cis: torch.Tensor, ): h = x + self.drop_path(self.attention(self.attention_norm(x), mask, freqs_cis)) out = h + self.drop_path(self.feed_forward(self.ffn_norm(h))) return out def forward_onestep( self, x: torch.Tensor, mask: torch.Tensor, freqs_cis: torch.Tensor, start_pos: int, end_pos: int, ): h = x + self.drop_path( self.attention(self.attention_norm(x), mask, freqs_cis, start_pos, end_pos) ) out = h + self.drop_path(self.feed_forward(self.ffn_norm(h))) return out def get_2d_pos(resolution, patch_size, num_scales=1): max_pos = resolution // patch_size coords_list = [] for i in range(num_scales): scale = 2 ** (num_scales - i - 1) P = max(resolution // scale // patch_size, 1) edge = float(max_pos) / P centers = (torch.arange(P, dtype=torch.float32) + 0.5) * edge grid_y, grid_x = torch.meshgrid(centers, centers, indexing="ij") coords = torch.stack([grid_x.reshape(-1), grid_y.reshape(-1)], dim=1) coords_list.append(coords) return torch.cat(coords_list, dim=0) def precompute_freqs_cis_2d( pos_2d, n_elem: int, base: float = 10000, cls_token_num=120 ): # split the dimension into half, one for x and one for y half_dim = n_elem // 2 freqs = 1.0 / ( base ** (torch.arange(0, half_dim, 2)[: (half_dim // 2)].float() / half_dim) ) t = pos_2d + 1.0 if cls_token_num > 0: t = torch.cat( [torch.zeros((cls_token_num, 2), device=freqs.device), t], dim=0, ) freqs = torch.outer(t.flatten(), freqs).view(*t.shape[:-1], -1) return torch.stack([torch.cos(freqs), torch.sin(freqs)], dim=-1) def apply_rotary_emb(x: torch.Tensor, freqs_cis: torch.Tensor): # x: (bs, seq_len, n_head, head_dim) # freqs_cis (seq_len, head_dim // 2, 2) xshaped = x.float().reshape( *x.shape[:-1], -1, 2 ) # (bs, seq_len, n_head, head_dim//2, 2) freqs_cis = freqs_cis.view( 1, xshaped.size(1), 1, xshaped.size(3), 2 ) # (1, seq_len, 1, head_dim//2, 2) x_out2 = torch.stack( [ xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1], xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1], ], dim=-1, ) x_out2 = x_out2.flatten(3) return x_out2.type_as(x)