""" Lookup Free Quantization Proposed in https://arxiv.org/abs/2310.05737 In the simplest setup, each dimension is quantized into {-1, 1}. An entropy penalty is used to encourage utilization. Refer to https://github.com/lucidrains/vector-quantize-pytorch/blob/master/vector_quantize_pytorch/lookup_free_quantization.py https://github.com/theAdamColton/ijepa-enhanced/blob/7edef5f7288ae8f537f0db8a10044a2a487f70c9/ijepa_enhanced/lfq.py """ from math import log2, ceil from collections import namedtuple import torch from torch import nn, einsum import torch.nn.functional as F from torch.nn import Module from einops import rearrange, reduce, pack, unpack # constants LossBreakdown = namedtuple('LossBreakdown', ['per_sample_entropy', 'codebook_entropy', 'commitment', 'avg_probs']) # helper functions def exists(v): return v is not None def default(*args): for arg in args: if exists(arg): return arg() if callable(arg) else arg return None def pack_one(t, pattern): return pack([t], pattern) def unpack_one(t, ps, pattern): return unpack(t, ps, pattern)[0] # entropy def entropy(prob): return (-prob * torch.log(prob + 1e-5)).sum(dim=-1) # class def mult_along_first_dims(x, y): """ returns x * y elementwise along the leading dimensions of y """ ndim_to_expand = x.ndim - y.ndim for _ in range(ndim_to_expand): y = y.unsqueeze(-1) return x * y def masked_mean(x, m): """ takes the mean of the elements of x that are not masked the mean is taken along the shared leading dims of m equivalent to: x[m].mean(tuple(range(m.ndim))) The benefit of using masked_mean rather than using tensor indexing is that masked_mean is much faster for torch-compile on batches. The drawback is larger floating point errors """ x = mult_along_first_dims(x, m) x = x / m.sum() return x.sum(tuple(range(m.ndim))) def entropy_loss( logits, mask=None, temperature=0.01, sample_minimization_weight=1.0, batch_maximization_weight=1.0, eps=1e-5, ): """ Entropy loss of unnormalized logits logits: Affinities are over the last dimension https://github.com/google-research/magvit/blob/05e8cfd6559c47955793d70602d62a2f9b0bdef5/videogvt/train_lib/losses.py#L279 LANGUAGE MODEL BEATS DIFFUSION — TOKENIZER IS KEY TO VISUAL GENERATION (2024) """ probs = F.softmax(logits / temperature, -1) log_probs = F.log_softmax(logits / temperature + eps, -1) if mask is not None: # avg_probs = probs[mask].mean(tuple(range(probs.ndim - 1))) # avg_probs = einx.mean("... D -> D", probs[mask]) avg_probs = masked_mean(probs, mask) # avg_probs = einx.mean("... D -> D", avg_probs) else: avg_probs = reduce(probs, "... D -> D", "mean") avg_entropy = -torch.sum(avg_probs * torch.log(avg_probs + eps)) sample_entropy = -torch.sum(probs * log_probs, -1) if mask is not None: # sample_entropy = sample_entropy[mask].mean() sample_entropy = masked_mean(sample_entropy, mask).mean() else: sample_entropy = torch.mean(sample_entropy) loss = (sample_minimization_weight * sample_entropy) - ( batch_maximization_weight * avg_entropy ) return sample_entropy, avg_entropy, loss class GFQ(Module): def __init__( self, *, dim, num_codebooks = 1, sample_minimization_weight=1.0, batch_maximization_weight=1.0, ): super().__init__() self.token_factorization = num_codebooks > 1 self.codebook_dim = dim // num_codebooks self.codebook_size = 2 ** self.codebook_dim self.dim = dim self.num_codebooks = num_codebooks self.vocab_size = num_codebooks * self.codebook_size # for entropy loss self.sample_minimization_weight = sample_minimization_weight self.batch_maximization_weight = batch_maximization_weight self.factorized_bits = [self.codebook_dim] * num_codebooks for i, factorized_bit in enumerate(self.factorized_bits): self.register_buffer(f"mask_{i}", 2 ** torch.arange(factorized_bit), persistent=False) # codes all_codes = torch.arange(self.codebook_size) bits = self.indices_to_bits(all_codes) codebook = bits * 2.0 - 1.0 self.register_buffer('codebook', codebook, persistent = False) self.register_buffer('zero', torch.tensor(0.), persistent = False) @property def dtype(self): return self.codebook.dtype def indices_to_bits(self, x): """ x: long tensor of indices returns big endian bits """ mask = 2 ** torch.arange(self.codebook_dim, device=x.device, dtype=torch.long) x = (x.unsqueeze(-1) & mask) != 0 # x is now big endian bits, the last dimension being the bits return x def get_codebook_entry(self, x, bhwc, index_order): #0610 mask = getattr(self, f"mask_{index_order}") if self.token_factorization else self.mask mask = mask.to(device=x.device, dtype=torch.long) x = (x.unsqueeze(-1) & mask) != 0 x = x * 2.0 - 1.0 #back to the float b, h, w, c = bhwc x = rearrange(x, "b (h w) c -> b h w c", h=h, w=w, c=c) x = rearrange(x, "b h w c -> b c h w") ## scale back return x def bits_to_indices(self, bits): """ bits: bool tensor of big endian bits, where the last dimension is the bit dimension returns indices, which are long integers from 0 to self.codebook_size """ assert bits.shape[-1] == self.codebook_dim indices = 2 ** torch.arange( 0, self.codebook_dim, 1, dtype=torch.long, device=bits.device, ) return (bits * indices).sum(-1) def decode(self, x): """ x: ... NH where NH is number of codebook heads A longtensor of codebook indices, containing values from 0 to self.codebook_size """ x = self.indices_to_bits(x) x = x.to(self.dtype) # to some sort of float x = x * 2 - 1 # -1 or 1 x = rearrange(x, "... NC Z-> ... (NC Z)") return x def forward( self, x, inv_temperature = 100., return_loss_breakdown = False, mask = None, return_loss = True, ): """ einstein notation b - batch n - sequence (or flattened spatial dimensions) d - feature dimension, which is also log2(codebook size) c - number of codebook dim """ x = rearrange(x, 'b d ... -> b ... d') x, ps = pack_one(x, 'b * d') x = rearrange(x, 'b n (c d) -> b n c d', c = self.num_codebooks) # split out number of codebooks codebook_value = torch.Tensor([1.0]).to(device=x.device, dtype=x.dtype) quantized = torch.where(x > 0, codebook_value, -codebook_value) # higher than 0 filled # calculate indices if self.token_factorization: quantized = rearrange(quantized, 'b n c d -> b n 1 (c d)') indices_list = [] begin = 0 end = 0 for i, factorized_bit in enumerate(self.factorized_bits): end += factorized_bit mask_name = f"mask_{i}" mask = getattr(self, mask_name) indices = reduce((quantized[..., begin:end] > 0).int() * mask.int(), "b n c d -> b n c", "sum") indices_list.append(indices) begin += factorized_bit quantized = rearrange(quantized, 'b n 1 (c d) -> b n c d', c = self.num_codebooks) else: indices = reduce((quantized > 0).int() * self.mask.int(), 'b n c d -> b n c', 'sum') # entropy aux loss if self.training and return_loss: logits = 2 * einsum('... i d, j d -> ... i j', x, self.codebook) # the same as euclidean distance up to a constant per_sample_entropy, codebook_entropy, entropy_aux_loss = entropy_loss( logits = logits, sample_minimization_weight = self.sample_minimization_weight, batch_maximization_weight = self.batch_maximization_weight ) avg_probs = self.zero else: per_sample_entropy = codebook_entropy = self.zero entropy_aux_loss = self.zero avg_probs = self.zero # commit loss if self.training: commit_loss = F.mse_loss(x, quantized.detach(), reduction = 'none') if exists(mask): commit_loss = commit_loss[mask] commit_loss = commit_loss.mean() else: commit_loss = self.zero # use straight-through gradients (optionally with custom activation fn) if training if self.training: quantized = x + (quantized - x).detach() #transfer to quantized # merge back codebook dim quantized = rearrange(quantized, 'b n c d -> b n (c d)') # reconstitute image or video dimensions quantized = unpack_one(quantized, ps, 'b * d') quantized = rearrange(quantized, 'b ... d -> b d ...') if self.token_factorization: indices_ = [] for i, indices in enumerate(indices_list): indices = unpack_one(indices, ps, "b * c") indices = indices.flatten() indices_.append(indices) indices = indices_ else: indices = unpack_one(indices, ps, 'b * c') indices = indices.flatten() ret = (quantized, entropy_aux_loss, indices) if not return_loss_breakdown: return ret return ret, LossBreakdown(per_sample_entropy, codebook_entropy, commit_loss, avg_probs) if __name__ == "__main__": quantizer = GFQ( codebook_size = 2**18, # codebook size, must be a power of 2 dim = 18, # this is the input feature dimension, defaults to log2(codebook_size) if not defined sample_minimization_weight = 1.0, # within entropy loss, how much weight to give to diversity of codes, taken from https://arxiv.org/abs/1911.05894 batch_maximization_weight = 1.0 ) image_feats = torch.randn(2, 18, 16, 16) #16 is dim, must be power of 2 of codebook_size quantized, indices, entropy_aux_loss = quantizer(image_feats, inv_temperature=100.) # you may want to experiment with temperature assert image_feats.shape == quantized.shape assert (quantized == quantizer.indices_to_codes(indices)).all()