Update all files for BitDance-ImageNet-diffusers
Browse files
BitDance_B_4x/transformer/diff_head_parallel.py
ADDED
|
@@ -0,0 +1,310 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
|
| 7 |
+
from .sampling_parallel import euler_maruyama
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def timestep_embedding(t, dim, max_period=10000, time_factor: float = 1000.0):
|
| 11 |
+
half = dim // 2
|
| 12 |
+
t = time_factor * t.float()
|
| 13 |
+
freqs = torch.exp(
|
| 14 |
+
-math.log(max_period)
|
| 15 |
+
* torch.arange(start=0, end=half, dtype=torch.float32, device=t.device)
|
| 16 |
+
/ half
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
args = t[:, None] * freqs[None]
|
| 20 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
| 21 |
+
if dim % 2:
|
| 22 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
| 23 |
+
if torch.is_floating_point(t):
|
| 24 |
+
embedding = embedding.to(t)
|
| 25 |
+
return embedding
|
| 26 |
+
|
| 27 |
+
def time_shift_sana(t: torch.Tensor, flow_shift: float = 1., sigma: float = 1.):
|
| 28 |
+
return (1 / flow_shift) / ( (1 / flow_shift) + (1 / t - 1) ** sigma)
|
| 29 |
+
|
| 30 |
+
class DiffHead(nn.Module):
|
| 31 |
+
"""Diffusion Loss"""
|
| 32 |
+
|
| 33 |
+
def __init__(
|
| 34 |
+
self,
|
| 35 |
+
ch_target,
|
| 36 |
+
ch_cond,
|
| 37 |
+
ch_latent,
|
| 38 |
+
depth_latent,
|
| 39 |
+
depth_adanln,
|
| 40 |
+
grad_checkpointing=False,
|
| 41 |
+
time_shift=1.,
|
| 42 |
+
time_schedule='logit_normal',
|
| 43 |
+
parallel_num=4,
|
| 44 |
+
P_std: float = 1.,
|
| 45 |
+
P_mean: float = 0.,
|
| 46 |
+
):
|
| 47 |
+
super(DiffHead, self).__init__()
|
| 48 |
+
self.ch_target = ch_target
|
| 49 |
+
self.time_shift = time_shift
|
| 50 |
+
self.time_schedule = time_schedule
|
| 51 |
+
self.P_std = P_std
|
| 52 |
+
self.P_mean = P_mean
|
| 53 |
+
|
| 54 |
+
self.net = TransEncoder(
|
| 55 |
+
in_channels=ch_target,
|
| 56 |
+
model_channels=ch_latent,
|
| 57 |
+
z_channels=ch_cond,
|
| 58 |
+
num_res_blocks=depth_latent,
|
| 59 |
+
num_ada_ln_blocks=depth_adanln,
|
| 60 |
+
grad_checkpointing=grad_checkpointing,
|
| 61 |
+
parallel_num=parallel_num,
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
def forward(self, x, cond):
|
| 65 |
+
with torch.autocast(device_type="cuda", enabled=False):
|
| 66 |
+
with torch.no_grad():
|
| 67 |
+
if self.time_schedule == 'logit_normal':
|
| 68 |
+
t = (torch.randn((x.shape[0]), device=x.device) * self.P_std + self.P_mean).sigmoid()
|
| 69 |
+
if self.time_shift != 1.:
|
| 70 |
+
t = time_shift_sana(t, self.time_shift)
|
| 71 |
+
elif self.time_schedule == 'uniform':
|
| 72 |
+
t = torch.rand((x.shape[0]), device=x.device)
|
| 73 |
+
if self.time_shift != 1.:
|
| 74 |
+
t = time_shift_sana(t, self.time_shift)
|
| 75 |
+
else:
|
| 76 |
+
raise NotImplementedError(f"unknown time_schedule {self.time_schedule}")
|
| 77 |
+
e = torch.randn_like(x)
|
| 78 |
+
ti = t.view(-1, 1, 1)
|
| 79 |
+
z = (1.0 - ti) * e + ti * x
|
| 80 |
+
v = (x - z) / (1 - ti).clamp_min(0.05)
|
| 81 |
+
|
| 82 |
+
x_pred = self.net(z, t, cond)
|
| 83 |
+
v_pred = (x_pred - z) / (1 - ti).clamp_min(0.05)
|
| 84 |
+
|
| 85 |
+
with torch.autocast(device_type="cuda", enabled=False):
|
| 86 |
+
v_pred = v_pred.float()
|
| 87 |
+
loss = torch.mean((v - v_pred) ** 2)
|
| 88 |
+
return loss
|
| 89 |
+
|
| 90 |
+
def sample(
|
| 91 |
+
self,
|
| 92 |
+
z,
|
| 93 |
+
cfg,
|
| 94 |
+
num_sampling_steps,
|
| 95 |
+
):
|
| 96 |
+
return euler_maruyama(
|
| 97 |
+
self.ch_target,
|
| 98 |
+
self.net.forward,
|
| 99 |
+
z,
|
| 100 |
+
cfg,
|
| 101 |
+
num_sampling_steps=num_sampling_steps,
|
| 102 |
+
time_shift = self.time_shift,
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
def initialize_weights(self):
|
| 106 |
+
self.net.initialize_weights()
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
class TimestepEmbedder(nn.Module):
|
| 110 |
+
"""
|
| 111 |
+
Embeds scalar timesteps into vector representations.
|
| 112 |
+
"""
|
| 113 |
+
|
| 114 |
+
def __init__(self, hidden_size, frequency_embedding_size=256):
|
| 115 |
+
super().__init__()
|
| 116 |
+
self.mlp = nn.Sequential(
|
| 117 |
+
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
|
| 118 |
+
nn.SiLU(),
|
| 119 |
+
nn.Linear(hidden_size, hidden_size, bias=True),
|
| 120 |
+
)
|
| 121 |
+
self.frequency_embedding_size = frequency_embedding_size
|
| 122 |
+
|
| 123 |
+
def forward(self, t):
|
| 124 |
+
t_freq = timestep_embedding(t, self.frequency_embedding_size)
|
| 125 |
+
t_emb = self.mlp(t_freq)
|
| 126 |
+
return t_emb
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
class ResBlock(nn.Module):
|
| 130 |
+
def __init__(self, channels):
|
| 131 |
+
super().__init__()
|
| 132 |
+
self.channels = channels
|
| 133 |
+
self.norm = nn.LayerNorm(channels, eps=1e-6, elementwise_affine=True)
|
| 134 |
+
hidden_dim = int(channels * 1.5)
|
| 135 |
+
self.w1 = nn.Linear(channels, hidden_dim * 2, bias=True)
|
| 136 |
+
self.w2 = nn.Linear(hidden_dim, channels, bias=True)
|
| 137 |
+
|
| 138 |
+
def forward(self, x, scale, shift, gate):
|
| 139 |
+
h = self.norm(x) * (1 + scale) + shift
|
| 140 |
+
h1, h2 = self.w1(h).chunk(2, dim=-1)
|
| 141 |
+
h = self.w2(F.silu(h1) * h2)
|
| 142 |
+
return x + h * gate
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
class FinalLayer(nn.Module):
|
| 146 |
+
def __init__(self, channels, out_channels):
|
| 147 |
+
super().__init__()
|
| 148 |
+
self.norm_final = nn.LayerNorm(channels, eps=1e-6, elementwise_affine=False)
|
| 149 |
+
self.ada_ln_modulation = nn.Linear(channels, channels * 2, bias=True)
|
| 150 |
+
self.linear = nn.Linear(channels, out_channels, bias=True)
|
| 151 |
+
|
| 152 |
+
def forward(self, x, y):
|
| 153 |
+
scale, shift = self.ada_ln_modulation(y).chunk(2, dim=-1)
|
| 154 |
+
x = self.norm_final(x) * (1.0 + scale) + shift
|
| 155 |
+
x = self.linear(x)
|
| 156 |
+
return x
|
| 157 |
+
|
| 158 |
+
class Attention(nn.Module):
|
| 159 |
+
def __init__(
|
| 160 |
+
self,
|
| 161 |
+
dim,
|
| 162 |
+
n_head,
|
| 163 |
+
):
|
| 164 |
+
super().__init__()
|
| 165 |
+
assert dim % n_head == 0
|
| 166 |
+
self.dim = dim
|
| 167 |
+
self.head_dim = dim // n_head
|
| 168 |
+
self.scale = self.head_dim**-0.5
|
| 169 |
+
self.n_head = n_head
|
| 170 |
+
total_kv_dim = (self.n_head * 3) * self.head_dim
|
| 171 |
+
|
| 172 |
+
self.wqkv = nn.Linear(dim, total_kv_dim, bias=True)
|
| 173 |
+
self.wo = nn.Linear(dim, dim, bias=True)
|
| 174 |
+
|
| 175 |
+
def forward(
|
| 176 |
+
self,
|
| 177 |
+
x: torch.Tensor,
|
| 178 |
+
):
|
| 179 |
+
bsz, seqlen, _ = x.shape
|
| 180 |
+
xq, xk, xv = self.wqkv(x).chunk(3, dim=-1)
|
| 181 |
+
|
| 182 |
+
xq = xq.view(bsz, seqlen, self.n_head, self.head_dim)
|
| 183 |
+
xk = xk.view(bsz, seqlen, self.n_head, self.head_dim)
|
| 184 |
+
xv = xv.view(bsz, seqlen, self.n_head, self.head_dim)
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
xq, xk, xv = map(lambda x: x.transpose(1, 2), (xq, xk, xv))
|
| 188 |
+
xq = xq * self.scale
|
| 189 |
+
attn = xq @ xk.transpose(-1, -2)
|
| 190 |
+
attn = F.softmax(attn, dim=-1)
|
| 191 |
+
output = (attn @ xv).transpose(1, 2).contiguous()
|
| 192 |
+
|
| 193 |
+
# output = flash_attn_func(
|
| 194 |
+
# xq,
|
| 195 |
+
# xk,
|
| 196 |
+
# xv,
|
| 197 |
+
# causal=False,
|
| 198 |
+
# )
|
| 199 |
+
|
| 200 |
+
output = output.view(bsz, seqlen, self.dim)
|
| 201 |
+
|
| 202 |
+
output = self.wo(output)
|
| 203 |
+
return output
|
| 204 |
+
|
| 205 |
+
class TransBlock(nn.Module):
|
| 206 |
+
def __init__(self, channels):
|
| 207 |
+
super().__init__()
|
| 208 |
+
self.channels = channels
|
| 209 |
+
self.norm1 = nn.LayerNorm(channels, eps=1e-6, elementwise_affine=True)
|
| 210 |
+
self.attn = Attention(channels, n_head=channels//64)
|
| 211 |
+
|
| 212 |
+
self.norm2 = nn.LayerNorm(channels, eps=1e-6, elementwise_affine=True)
|
| 213 |
+
hidden_dim = int(channels * 1.5)
|
| 214 |
+
self.w1 = nn.Linear(channels, hidden_dim * 2, bias=True)
|
| 215 |
+
self.w2 = nn.Linear(hidden_dim, channels, bias=True)
|
| 216 |
+
|
| 217 |
+
def forward(self, x, scale1, shift1, gate1, scale2, shift2, gate2):
|
| 218 |
+
h = self.norm1(x) * (1 + scale1) + shift1
|
| 219 |
+
h = self.attn(h)
|
| 220 |
+
x = x + h * gate1
|
| 221 |
+
h = self.norm2(x) * (1 + scale2) + shift2
|
| 222 |
+
h1, h2 = self.w1(h).chunk(2, dim=-1)
|
| 223 |
+
h = self.w2(F.silu(h1) * h2)
|
| 224 |
+
return x + h * gate2
|
| 225 |
+
|
| 226 |
+
class TransEncoder(nn.Module):
|
| 227 |
+
|
| 228 |
+
def __init__(
|
| 229 |
+
self,
|
| 230 |
+
in_channels,
|
| 231 |
+
model_channels,
|
| 232 |
+
z_channels,
|
| 233 |
+
num_res_blocks,
|
| 234 |
+
num_ada_ln_blocks=2,
|
| 235 |
+
grad_checkpointing=False,
|
| 236 |
+
parallel_num=4,
|
| 237 |
+
):
|
| 238 |
+
super().__init__()
|
| 239 |
+
|
| 240 |
+
self.in_channels = in_channels
|
| 241 |
+
self.model_channels = model_channels
|
| 242 |
+
self.out_channels = in_channels
|
| 243 |
+
self.num_res_blocks = num_res_blocks
|
| 244 |
+
self.grad_checkpointing = grad_checkpointing
|
| 245 |
+
self.parallel_num = parallel_num
|
| 246 |
+
|
| 247 |
+
self.time_embed = TimestepEmbedder(model_channels)
|
| 248 |
+
self.cond_embed = nn.Linear(z_channels, model_channels)
|
| 249 |
+
|
| 250 |
+
self.input_proj = nn.Linear(in_channels, model_channels)
|
| 251 |
+
self.res_blocks = nn.ModuleList()
|
| 252 |
+
for i in range(num_res_blocks):
|
| 253 |
+
self.res_blocks.append(
|
| 254 |
+
TransBlock(
|
| 255 |
+
model_channels,
|
| 256 |
+
)
|
| 257 |
+
)
|
| 258 |
+
# share adaLN for consecutive blocks, to save computation and parameters
|
| 259 |
+
self.ada_ln_blocks = nn.ModuleList()
|
| 260 |
+
for i in range(num_ada_ln_blocks):
|
| 261 |
+
self.ada_ln_blocks.append(
|
| 262 |
+
nn.Linear(model_channels, model_channels * 6, bias=True)
|
| 263 |
+
)
|
| 264 |
+
self.ada_ln_switch_freq = max(1, num_res_blocks // num_ada_ln_blocks)
|
| 265 |
+
assert (
|
| 266 |
+
num_res_blocks % self.ada_ln_switch_freq
|
| 267 |
+
) == 0, "num_res_blocks must be divisible by num_ada_ln_blocks"
|
| 268 |
+
self.final_layer = FinalLayer(model_channels, self.out_channels)
|
| 269 |
+
|
| 270 |
+
self.initialize_weights()
|
| 271 |
+
|
| 272 |
+
def initialize_weights(self):
|
| 273 |
+
def _basic_init(module):
|
| 274 |
+
if isinstance(module, nn.Linear):
|
| 275 |
+
torch.nn.init.xavier_uniform_(module.weight)
|
| 276 |
+
if module.bias is not None:
|
| 277 |
+
nn.init.constant_(module.bias, 0)
|
| 278 |
+
|
| 279 |
+
self.apply(_basic_init)
|
| 280 |
+
|
| 281 |
+
# Initialize timestep embedding MLP
|
| 282 |
+
nn.init.normal_(self.time_embed.mlp[0].weight, std=0.02)
|
| 283 |
+
nn.init.normal_(self.time_embed.mlp[2].weight, std=0.02)
|
| 284 |
+
|
| 285 |
+
for block in self.ada_ln_blocks:
|
| 286 |
+
nn.init.constant_(block.weight, 0)
|
| 287 |
+
nn.init.constant_(block.bias, 0)
|
| 288 |
+
|
| 289 |
+
# Zero-out output layers
|
| 290 |
+
nn.init.constant_(self.final_layer.ada_ln_modulation.weight, 0)
|
| 291 |
+
nn.init.constant_(self.final_layer.ada_ln_modulation.bias, 0)
|
| 292 |
+
nn.init.constant_(self.final_layer.linear.weight, 0)
|
| 293 |
+
nn.init.constant_(self.final_layer.linear.bias, 0)
|
| 294 |
+
|
| 295 |
+
@torch.compile()
|
| 296 |
+
def forward(self, x, t, c):
|
| 297 |
+
x = self.input_proj(x)
|
| 298 |
+
t = self.time_embed(t).unsqueeze(1)
|
| 299 |
+
c = self.cond_embed(c)
|
| 300 |
+
|
| 301 |
+
y = F.silu(t+c)
|
| 302 |
+
scale1, shift1, gate1, scale2, shift2, gate2 = self.ada_ln_blocks[0](y).chunk(6, dim=-1)
|
| 303 |
+
|
| 304 |
+
for i, block in enumerate(self.res_blocks):
|
| 305 |
+
if i > 0 and i % self.ada_ln_switch_freq == 0:
|
| 306 |
+
ada_ln_block = self.ada_ln_blocks[i // self.ada_ln_switch_freq]
|
| 307 |
+
scale1, shift1, gate1, scale2, shift2, gate2 = ada_ln_block(y).chunk(6, dim=-1)
|
| 308 |
+
x = block(x, scale1, shift1, gate1, scale2, shift2, gate2)
|
| 309 |
+
|
| 310 |
+
return self.final_layer(x, y)
|