Update all files for BitDance-ImageNet-diffusers
Browse files
BitDance_L_1x/transformer/src/sampling_parallel.py
ADDED
|
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
|
| 3 |
+
def time_shift_sana(t: torch.Tensor, flow_shift: float = 1., sigma: float = 1.):
|
| 4 |
+
return (1 / flow_shift) / ( (1 / flow_shift) + (1 / t - 1) ** sigma)
|
| 5 |
+
|
| 6 |
+
def get_score_from_velocity(velocity, x, t):
|
| 7 |
+
alpha_t, d_alpha_t = t, 1
|
| 8 |
+
sigma_t, d_sigma_t = 1 - t, -1
|
| 9 |
+
mean = x
|
| 10 |
+
reverse_alpha_ratio = alpha_t / d_alpha_t
|
| 11 |
+
var = sigma_t**2 - reverse_alpha_ratio * d_sigma_t * sigma_t
|
| 12 |
+
score = (reverse_alpha_ratio * velocity - mean) / var
|
| 13 |
+
return score
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def get_velocity_from_cfg(velocity, cfg, cfg_mult):
|
| 17 |
+
if cfg_mult == 2:
|
| 18 |
+
cond_v, uncond_v = torch.chunk(velocity, 2, dim=0)
|
| 19 |
+
velocity = uncond_v + cfg * (cond_v - uncond_v)
|
| 20 |
+
return velocity
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
@torch.compile()
|
| 24 |
+
def euler_step(x, v, dt: float, cfg: float, cfg_mult: int):
|
| 25 |
+
with torch.amp.autocast("cuda", enabled=False):
|
| 26 |
+
v = v.to(torch.float32)
|
| 27 |
+
v = get_velocity_from_cfg(v, cfg, cfg_mult)
|
| 28 |
+
x = x + v * dt
|
| 29 |
+
return x
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
@torch.compile()
|
| 33 |
+
def euler_maruyama_step(x, v, t, dt: float, cfg: float, cfg_mult: int):
|
| 34 |
+
with torch.amp.autocast("cuda", enabled=False):
|
| 35 |
+
v = v.to(torch.float32)
|
| 36 |
+
v = get_velocity_from_cfg(v, cfg, cfg_mult)
|
| 37 |
+
score = get_score_from_velocity(v, x, t)
|
| 38 |
+
drift = v + (1 - t) * score
|
| 39 |
+
noise_scale = (2.0 * (1.0 - t) * dt) ** 0.5
|
| 40 |
+
x = x + drift * dt + noise_scale * torch.randn_like(x)
|
| 41 |
+
return x
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def euler_maruyama(
|
| 45 |
+
input_dim,
|
| 46 |
+
forward_fn,
|
| 47 |
+
c: torch.Tensor,
|
| 48 |
+
cfg: float = 1.0,
|
| 49 |
+
num_sampling_steps: int = 20,
|
| 50 |
+
last_step_size: float = 0.05,
|
| 51 |
+
time_shift: float = 1.,
|
| 52 |
+
):
|
| 53 |
+
cfg_mult = 1
|
| 54 |
+
if cfg > 1.0:
|
| 55 |
+
cfg_mult += 1
|
| 56 |
+
|
| 57 |
+
x_shape = list(c.shape)
|
| 58 |
+
x_shape[0] = x_shape[0] // cfg_mult
|
| 59 |
+
x_shape[-1] = input_dim
|
| 60 |
+
x = torch.randn(x_shape, device=c.device)
|
| 61 |
+
# an = (1.0 - last_step_size) / num_sampling_steps
|
| 62 |
+
t_all = torch.linspace(0, 1-last_step_size, num_sampling_steps+1, device=c.device, dtype=torch.float32)
|
| 63 |
+
t_all = time_shift_sana(t_all, time_shift)
|
| 64 |
+
dt = t_all[1:] - t_all[:-1]
|
| 65 |
+
t = torch.tensor(
|
| 66 |
+
0.0, device=c.device, dtype=torch.float32
|
| 67 |
+
) # use tensor to avoid compile warning
|
| 68 |
+
t_batch = torch.zeros(c.shape[0], device=c.device)
|
| 69 |
+
for i in range(num_sampling_steps):
|
| 70 |
+
t_batch[:] = t
|
| 71 |
+
combined = torch.cat([x] * cfg_mult, dim=0)
|
| 72 |
+
output = forward_fn(
|
| 73 |
+
combined,
|
| 74 |
+
t_batch,
|
| 75 |
+
c,
|
| 76 |
+
)
|
| 77 |
+
v = (output - combined) / (1 - t_batch.view(-1, 1, 1)).clamp_min(0.05)
|
| 78 |
+
x = euler_maruyama_step(x, v, t, dt[i], cfg, cfg_mult)
|
| 79 |
+
t += dt[i]
|
| 80 |
+
|
| 81 |
+
combined = torch.cat([x] * cfg_mult, dim=0)
|
| 82 |
+
t_batch[:] = 1 - last_step_size
|
| 83 |
+
output = forward_fn(
|
| 84 |
+
combined,
|
| 85 |
+
t_batch,
|
| 86 |
+
c,
|
| 87 |
+
)
|
| 88 |
+
v = (output - combined) / (1 - t_batch.view(-1, 1, 1)).clamp_min(0.05)
|
| 89 |
+
x = euler_step(x, v, last_step_size, cfg, cfg_mult)
|
| 90 |
+
|
| 91 |
+
return torch.cat([x] * cfg_mult, dim=0)
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def euler(
|
| 95 |
+
input_dim,
|
| 96 |
+
forward_fn,
|
| 97 |
+
c,
|
| 98 |
+
cfg: float = 1.0,
|
| 99 |
+
num_sampling_steps: int = 50,
|
| 100 |
+
):
|
| 101 |
+
cfg_mult = 1
|
| 102 |
+
if cfg > 1.0:
|
| 103 |
+
cfg_mult = 2
|
| 104 |
+
|
| 105 |
+
x_shape = list(c.shape)
|
| 106 |
+
x_shape[0] = x_shape[0] // cfg_mult
|
| 107 |
+
x_shape[-1] = input_dim
|
| 108 |
+
x = torch.randn(x_shape, device=c.device)
|
| 109 |
+
dt = 1.0 / num_sampling_steps
|
| 110 |
+
t = 0
|
| 111 |
+
t_batch = torch.zeros(c.shape[0], device=c.device)
|
| 112 |
+
for _ in range(num_sampling_steps):
|
| 113 |
+
t_batch[:] = t
|
| 114 |
+
combined = torch.cat([x] * cfg_mult, dim=0)
|
| 115 |
+
v = forward_fn(combined, t_batch, c)
|
| 116 |
+
x = euler_step(x, v, dt, cfg, cfg_mult)
|
| 117 |
+
t += dt
|
| 118 |
+
|
| 119 |
+
return torch.cat([x] * cfg_mult, dim=0)
|