Update all files for BitDance-ImageNet-diffusers
Browse files
BitDance_H_1x/transformer/utils.py
ADDED
|
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import torch.distributed as dist
|
| 5 |
+
from torch.nn import functional as F
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def create_logger(logging_dir):
|
| 9 |
+
"""
|
| 10 |
+
Create a logger that writes to a log file and stdout.
|
| 11 |
+
"""
|
| 12 |
+
if dist.get_rank() == 0: # real logger
|
| 13 |
+
logging.basicConfig(
|
| 14 |
+
level=logging.INFO,
|
| 15 |
+
format="[\033[34m%(asctime)s\033[0m] %(message)s",
|
| 16 |
+
datefmt="%Y-%m-%d %H:%M:%S",
|
| 17 |
+
handlers=[
|
| 18 |
+
logging.StreamHandler(),
|
| 19 |
+
logging.FileHandler(f"{logging_dir}/log.txt"),
|
| 20 |
+
],
|
| 21 |
+
)
|
| 22 |
+
logger = logging.getLogger(__name__)
|
| 23 |
+
else: # dummy logger (does nothing)
|
| 24 |
+
logger = logging.getLogger(__name__)
|
| 25 |
+
logger.addHandler(logging.NullHandler())
|
| 26 |
+
return logger
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
@torch.no_grad()
|
| 30 |
+
def update_ema(ema_model, model, decay=0.9999):
|
| 31 |
+
"""
|
| 32 |
+
Step the EMA model towards the current model.
|
| 33 |
+
"""
|
| 34 |
+
ema_ps = []
|
| 35 |
+
ps = []
|
| 36 |
+
|
| 37 |
+
for e, m in zip(ema_model.parameters(), model.parameters()):
|
| 38 |
+
if m.requires_grad:
|
| 39 |
+
ema_ps.append(e)
|
| 40 |
+
ps.append(m)
|
| 41 |
+
torch._foreach_lerp_(ema_ps, ps, 1.0 - decay)
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
@torch.no_grad()
|
| 45 |
+
def sync_frozen_params_once(ema_model, model):
|
| 46 |
+
for e, m in zip(ema_model.parameters(), model.parameters()):
|
| 47 |
+
if not m.requires_grad:
|
| 48 |
+
e.copy_(m)
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def requires_grad(model, flag=True):
|
| 52 |
+
"""
|
| 53 |
+
Set requires_grad flag for all parameters in a model.
|
| 54 |
+
"""
|
| 55 |
+
for p in model.parameters():
|
| 56 |
+
p.requires_grad = flag
|
| 57 |
+
|
| 58 |
+
def patchify_raster(x, p):
|
| 59 |
+
B, C, H, W = x.shape
|
| 60 |
+
|
| 61 |
+
assert H % p == 0 and W % p == 0, f"Image dimensions ({H},{W}) must be divisible by patch size {p}"
|
| 62 |
+
|
| 63 |
+
h_patches = H // p
|
| 64 |
+
w_patches = W // p
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
x = x.view(B, C, h_patches, p, w_patches, p)
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
x = x.permute(0, 2, 4, 3, 5, 1).contiguous()
|
| 71 |
+
|
| 72 |
+
x = x.reshape(B, -1, C)
|
| 73 |
+
|
| 74 |
+
return x
|
| 75 |
+
|
| 76 |
+
def unpatchify_raster(x, p, target_shape):
|
| 77 |
+
B, N, C = x.shape
|
| 78 |
+
H, W = target_shape
|
| 79 |
+
|
| 80 |
+
h_patches = H // p
|
| 81 |
+
w_patches = W // p
|
| 82 |
+
|
| 83 |
+
x = x.view(B, h_patches, w_patches, p, p, C)
|
| 84 |
+
|
| 85 |
+
x = x.permute(0, 5, 1, 3, 2, 4).contiguous()
|
| 86 |
+
|
| 87 |
+
x = x.reshape(B, C, H, W)
|
| 88 |
+
|
| 89 |
+
return x
|
| 90 |
+
|
| 91 |
+
def patchify_raster_2d(x: torch.Tensor, p: int, H: int, W: int) -> torch.Tensor:
|
| 92 |
+
N, C1, C2 = x.shape
|
| 93 |
+
|
| 94 |
+
assert N == H * W, f"N ({N}) must equal H*W ({H*W})"
|
| 95 |
+
assert H % p == 0 and W % p == 0, f"H/W ({H}/{W}) must be divisible by patch size {p}"
|
| 96 |
+
|
| 97 |
+
C_prime = C1 * C2
|
| 98 |
+
x_flat = x.view(N, C_prime)
|
| 99 |
+
|
| 100 |
+
x_2d = x_flat.view(H, W, C_prime)
|
| 101 |
+
|
| 102 |
+
h_patches = H // p
|
| 103 |
+
w_patches = W // p
|
| 104 |
+
|
| 105 |
+
x_split = x_2d.view(h_patches, p, w_patches, p, C_prime)
|
| 106 |
+
|
| 107 |
+
x_permuted = x_split.permute(0, 2, 1, 3, 4)
|
| 108 |
+
|
| 109 |
+
x_reordered = x_permuted.reshape(N, C_prime)
|
| 110 |
+
|
| 111 |
+
out = x_reordered.view(N, C1, C2)
|
| 112 |
+
|
| 113 |
+
return out
|