Update all files for BitDance-ImageNet-diffusers
Browse files
BitDance_L_1x/transformer/model_parallel.py
ADDED
|
@@ -0,0 +1,475 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
from functools import partial
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
from torch.nn import functional as F
|
| 7 |
+
from torch.utils.checkpoint import checkpoint
|
| 8 |
+
|
| 9 |
+
from .diff_head_parallel import DiffHead
|
| 10 |
+
from .layers_parallel import TransformerBlock, get_2d_pos, precompute_freqs_cis_2d
|
| 11 |
+
from .qae import VQModel
|
| 12 |
+
from .utils import patchify_raster, unpatchify_raster, patchify_raster_2d
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def get_model_args():
|
| 17 |
+
parser = argparse.ArgumentParser()
|
| 18 |
+
parser.add_argument(
|
| 19 |
+
"--model", type=str, choices=list(BitDance_models.keys()), default="BitDance-L"
|
| 20 |
+
)
|
| 21 |
+
parser.add_argument("--image-size", type=int, choices=[256, 512], default=256)
|
| 22 |
+
parser.add_argument("--down-size", type=int, default=16, choices=[16])
|
| 23 |
+
parser.add_argument("--patch-size", type=int, default=1, choices=[1, 2, 4])
|
| 24 |
+
parser.add_argument("--num-classes", type=int, default=1000)
|
| 25 |
+
parser.add_argument("--cls-token-num", type=int, default=64)
|
| 26 |
+
parser.add_argument("--latent-dim", type=int, default=16)
|
| 27 |
+
parser.add_argument("--diff-batch-mul", type=int, default=4)
|
| 28 |
+
parser.add_argument("--grad-checkpointing", action="store_true")
|
| 29 |
+
parser.add_argument("--trained-vae", type=str, default="")
|
| 30 |
+
parser.add_argument("--drop-rate", type=float, default=0.0)
|
| 31 |
+
parser.add_argument("--perturb-schedule", type=str, default="constant")
|
| 32 |
+
parser.add_argument("--perturb-rate", type=float, default=0.0)
|
| 33 |
+
parser.add_argument("--perturb-rate-max", type=float, default=0.3)
|
| 34 |
+
parser.add_argument("--time-schedule", type=str, default='logit_normal')
|
| 35 |
+
parser.add_argument("--time-shift", type=float, default=1.)
|
| 36 |
+
parser.add_argument("--parallel-num", type=int, default=4)
|
| 37 |
+
parser.add_argument("--P-std", type=float, default=0.8)
|
| 38 |
+
parser.add_argument("--P-mean", type=float, default=-0.8)
|
| 39 |
+
parser.add_argument("--parallel-mode", type=str, default='patch', choices=['standard', 'patch'])
|
| 40 |
+
return parser
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def create_model(args, device):
|
| 44 |
+
model = BitDance_models[args.model](
|
| 45 |
+
resolution=args.image_size,
|
| 46 |
+
down_size=args.down_size,
|
| 47 |
+
patch_size=args.patch_size,
|
| 48 |
+
latent_dim=args.latent_dim,
|
| 49 |
+
diff_batch_mul=args.diff_batch_mul,
|
| 50 |
+
cls_token_num=args.cls_token_num,
|
| 51 |
+
num_classes=args.num_classes,
|
| 52 |
+
grad_checkpointing=args.grad_checkpointing,
|
| 53 |
+
trained_vae=args.trained_vae,
|
| 54 |
+
drop_rate=args.drop_rate,
|
| 55 |
+
perturb_schedule=args.perturb_schedule,
|
| 56 |
+
perturb_rate=args.perturb_rate,
|
| 57 |
+
perturb_rate_max=args.perturb_rate_max,
|
| 58 |
+
time_schedule=args.time_schedule,
|
| 59 |
+
time_shift=args.time_shift,
|
| 60 |
+
parallel_num=args.parallel_num,
|
| 61 |
+
P_std=args.P_std,
|
| 62 |
+
P_mean=args.P_mean,
|
| 63 |
+
parallel_mode=args.parallel_mode,
|
| 64 |
+
).to(device, memory_format=torch.channels_last)
|
| 65 |
+
return model
|
| 66 |
+
|
| 67 |
+
class MLPConnector(nn.Module):
|
| 68 |
+
def __init__(self, in_dim, dim, dropout_p=0.0):
|
| 69 |
+
super().__init__()
|
| 70 |
+
hidden_dim = int(dim * 1.5)
|
| 71 |
+
self.w1 = nn.Linear(in_dim, hidden_dim * 2, bias=True)
|
| 72 |
+
self.w2 = nn.Linear(hidden_dim, dim, bias=True)
|
| 73 |
+
self.ffn_dropout = nn.Dropout(dropout_p)
|
| 74 |
+
|
| 75 |
+
def forward(self, x):
|
| 76 |
+
h1, h2 = self.w1(x).chunk(2, dim=-1)
|
| 77 |
+
return self.ffn_dropout(self.w2(F.silu(h1) * h2))
|
| 78 |
+
|
| 79 |
+
def flip_tensor_elements_uniform_prob(tensor: torch.Tensor, p_max: float) -> torch.Tensor:
|
| 80 |
+
if not 0.0 <= p_max <= 1.0:
|
| 81 |
+
raise ValueError(f"p_max must be in [0.0, 1.0] range, but got: {p_max}")
|
| 82 |
+
r1 = torch.rand_like(tensor)
|
| 83 |
+
r2 = torch.rand_like(tensor)
|
| 84 |
+
flip_mask = r1 < p_max * r2
|
| 85 |
+
multiplier = torch.where(flip_mask, -1.0, 1.0)
|
| 86 |
+
multiplier = multiplier.to(tensor.dtype)
|
| 87 |
+
flipped_tensor = tensor * multiplier
|
| 88 |
+
return flipped_tensor
|
| 89 |
+
|
| 90 |
+
def get_block_causal_mask(num_tokens_total, num_tokens_causal, block_size):
|
| 91 |
+
assert (num_tokens_total - num_tokens_causal) % block_size == 0
|
| 92 |
+
attention_mask = torch.zeros(num_tokens_total, num_tokens_total)
|
| 93 |
+
causal_mask = torch.triu(torch.ones(num_tokens_total, num_tokens_total), diagonal=1)
|
| 94 |
+
attention_mask.masked_fill_(causal_mask.bool(), float('-inf'))
|
| 95 |
+
|
| 96 |
+
for i in range(num_tokens_causal, num_tokens_total, block_size):
|
| 97 |
+
start_idx = i
|
| 98 |
+
end_idx = i + block_size
|
| 99 |
+
attention_mask[start_idx:end_idx, start_idx:end_idx] = 0
|
| 100 |
+
|
| 101 |
+
return attention_mask
|
| 102 |
+
|
| 103 |
+
class BitDance(nn.Module):
|
| 104 |
+
|
| 105 |
+
def __init__(
|
| 106 |
+
self,
|
| 107 |
+
dim,
|
| 108 |
+
n_layer,
|
| 109 |
+
n_head,
|
| 110 |
+
diff_layers,
|
| 111 |
+
diff_dim,
|
| 112 |
+
diff_adanln_layers,
|
| 113 |
+
latent_dim,
|
| 114 |
+
down_size,
|
| 115 |
+
patch_size,
|
| 116 |
+
resolution,
|
| 117 |
+
diff_batch_mul,
|
| 118 |
+
grad_checkpointing=False,
|
| 119 |
+
cls_token_num=16,
|
| 120 |
+
num_classes: int = 1000,
|
| 121 |
+
class_dropout_prob: float = 0.1,
|
| 122 |
+
trained_vae: str = "",
|
| 123 |
+
drop_rate: float = 0.0,
|
| 124 |
+
perturb_schedule: str = "constant",
|
| 125 |
+
perturb_rate: float = 0.0,
|
| 126 |
+
perturb_rate_max: float = 0.3,
|
| 127 |
+
time_schedule: str = 'logit_normal',
|
| 128 |
+
time_shift: float = 1.,
|
| 129 |
+
parallel_num: int = 4,
|
| 130 |
+
P_std: float = 1.,
|
| 131 |
+
P_mean: float = 0.,
|
| 132 |
+
parallel_mode: str = 'standard',
|
| 133 |
+
):
|
| 134 |
+
super().__init__()
|
| 135 |
+
|
| 136 |
+
self.n_layer = n_layer
|
| 137 |
+
self.resolution = resolution
|
| 138 |
+
self.down_size = down_size
|
| 139 |
+
self.patch_size = patch_size
|
| 140 |
+
self.num_classes = num_classes
|
| 141 |
+
self.cls_token_num = cls_token_num
|
| 142 |
+
self.class_dropout_prob = class_dropout_prob
|
| 143 |
+
self.latent_dim = latent_dim
|
| 144 |
+
self.trained_vae = trained_vae
|
| 145 |
+
self.perturb_schedule = perturb_schedule
|
| 146 |
+
self.perturb_rate = perturb_rate
|
| 147 |
+
self.perturb_rate_max = perturb_rate_max
|
| 148 |
+
self.parallel_num = parallel_num
|
| 149 |
+
self.parallel_mode = parallel_mode
|
| 150 |
+
|
| 151 |
+
# define the vae and mar model
|
| 152 |
+
ddconfig = {
|
| 153 |
+
"double_z": False,
|
| 154 |
+
"z_channels": latent_dim,
|
| 155 |
+
"in_channels": 3,
|
| 156 |
+
"out_ch": 3,
|
| 157 |
+
"ch": 256,
|
| 158 |
+
"ch_mult": [1,1,2,2,4],
|
| 159 |
+
"num_res_blocks": 4
|
| 160 |
+
}
|
| 161 |
+
num_codebooks = 4
|
| 162 |
+
# print(f"loading vae unexpected_keys: {unexpected_keys}")
|
| 163 |
+
self.vae = VQModel(ddconfig, num_codebooks)
|
| 164 |
+
self.grad_checkpointing = grad_checkpointing
|
| 165 |
+
|
| 166 |
+
self.cls_embedding = nn.Embedding(num_classes + 1, dim * self.cls_token_num)
|
| 167 |
+
self.query_token = nn.Parameter(torch.randn(1, self.parallel_num - 1, dim) * 0.02)
|
| 168 |
+
self.proj_in = MLPConnector(latent_dim * self.patch_size * self.patch_size, dim, drop_rate)
|
| 169 |
+
self.emb_norm = nn.RMSNorm(dim, eps=1e-6, elementwise_affine=True)
|
| 170 |
+
self.h, self.w = resolution // (down_size * patch_size), resolution // (down_size * patch_size)
|
| 171 |
+
self.total_tokens = self.h * self.w + self.cls_token_num
|
| 172 |
+
|
| 173 |
+
self.layers = torch.nn.ModuleList()
|
| 174 |
+
for layer_id in range(n_layer):
|
| 175 |
+
self.layers.append(
|
| 176 |
+
TransformerBlock(
|
| 177 |
+
dim,
|
| 178 |
+
n_head,
|
| 179 |
+
resid_dropout_p=drop_rate,
|
| 180 |
+
)
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
self.norm = nn.RMSNorm(dim, eps=1e-6, elementwise_affine=True)
|
| 184 |
+
self.pos_for_diff = nn.Embedding(self.h * self.w, dim)
|
| 185 |
+
self.head = DiffHead(
|
| 186 |
+
ch_target=latent_dim * self.patch_size * self.patch_size,
|
| 187 |
+
ch_cond=dim,
|
| 188 |
+
ch_latent=diff_dim,
|
| 189 |
+
depth_latent=diff_layers,
|
| 190 |
+
depth_adanln=diff_adanln_layers,
|
| 191 |
+
grad_checkpointing=grad_checkpointing,
|
| 192 |
+
time_shift=time_shift,
|
| 193 |
+
time_schedule=time_schedule,
|
| 194 |
+
parallel_num=parallel_num,
|
| 195 |
+
P_std=P_std,
|
| 196 |
+
P_mean=P_mean,
|
| 197 |
+
)
|
| 198 |
+
self.diff_batch_mul = diff_batch_mul
|
| 199 |
+
|
| 200 |
+
patch_2d_pos = get_2d_pos(resolution, int(down_size * patch_size))
|
| 201 |
+
|
| 202 |
+
freqs_cis = precompute_freqs_cis_2d(
|
| 203 |
+
patch_2d_pos,
|
| 204 |
+
dim // n_head,
|
| 205 |
+
10000,
|
| 206 |
+
cls_token_num=self.cls_token_num + self.parallel_num - 1,
|
| 207 |
+
)
|
| 208 |
+
|
| 209 |
+
if self.parallel_mode == 'patch':
|
| 210 |
+
freqs_cis[-self.h * self.w:] = patchify_raster_2d(freqs_cis[-self.h * self.w:], int(self.parallel_num ** 0.5), self.h, self.w)
|
| 211 |
+
|
| 212 |
+
self.register_buffer("freqs_cis", freqs_cis[:-self.parallel_num], persistent=False)
|
| 213 |
+
|
| 214 |
+
attn_mask = get_block_causal_mask(self.h * self.w + self.cls_token_num -1, self.cls_token_num -1, self.parallel_num)
|
| 215 |
+
self.register_buffer("attn_mask", attn_mask.unsqueeze(0).unsqueeze(0), persistent=False)
|
| 216 |
+
self.freeze_vae()
|
| 217 |
+
|
| 218 |
+
self.initialize_weights()
|
| 219 |
+
|
| 220 |
+
def load_vae_weight(self):
|
| 221 |
+
state = torch.load(
|
| 222 |
+
self.trained_vae,
|
| 223 |
+
map_location="cpu",
|
| 224 |
+
)
|
| 225 |
+
missing_keys, unexpected_keys = self.vae.load_state_dict(state["state_dict"], strict=False)
|
| 226 |
+
print(f"loading vae, missing_keys: {missing_keys}")
|
| 227 |
+
del state
|
| 228 |
+
|
| 229 |
+
def non_decay_keys(self):
|
| 230 |
+
return ["proj_in", "cls_embedding", "query_token"]
|
| 231 |
+
|
| 232 |
+
def freeze_module(self, module: nn.Module):
|
| 233 |
+
for param in module.parameters():
|
| 234 |
+
param.requires_grad = False
|
| 235 |
+
|
| 236 |
+
def freeze_vae(self):
|
| 237 |
+
self.freeze_module(self.vae)
|
| 238 |
+
self.vae.eval()
|
| 239 |
+
|
| 240 |
+
def initialize_weights(self):
|
| 241 |
+
# Initialize nn.Linear and nn.Embedding
|
| 242 |
+
self.apply(self.__init_weights)
|
| 243 |
+
self.head.initialize_weights()
|
| 244 |
+
# self.vae.initialize_weights()
|
| 245 |
+
|
| 246 |
+
def __init_weights(self, module):
|
| 247 |
+
std = 0.02
|
| 248 |
+
if isinstance(module, nn.Linear):
|
| 249 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 250 |
+
if module.bias is not None:
|
| 251 |
+
module.bias.data.zero_()
|
| 252 |
+
elif isinstance(module, nn.Embedding):
|
| 253 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 254 |
+
|
| 255 |
+
def drop_label(self, class_id):
|
| 256 |
+
if self.class_dropout_prob > 0.0 and self.training:
|
| 257 |
+
is_drop = (
|
| 258 |
+
torch.rand(class_id.shape, device=class_id.device)
|
| 259 |
+
< self.class_dropout_prob
|
| 260 |
+
)
|
| 261 |
+
class_id = torch.where(is_drop, self.num_classes, class_id)
|
| 262 |
+
return class_id
|
| 263 |
+
|
| 264 |
+
def patchify(self, x):
|
| 265 |
+
bsz, c, h, w = x.shape
|
| 266 |
+
p = self.patch_size
|
| 267 |
+
h_, w_ = h // p, w // p
|
| 268 |
+
|
| 269 |
+
x = x.reshape(bsz, c, h_, p, w_, p)
|
| 270 |
+
x = torch.einsum('nchpwq->nhwcpq', x)
|
| 271 |
+
x = x.reshape(bsz, h_ * w_, c * p ** 2)
|
| 272 |
+
return x # [n, l, d]
|
| 273 |
+
|
| 274 |
+
def unpatchify(self, x):
|
| 275 |
+
bsz = x.shape[0]
|
| 276 |
+
p = self.patch_size
|
| 277 |
+
c = self.latent_dim
|
| 278 |
+
h_, w_ = self.h, self.w
|
| 279 |
+
|
| 280 |
+
x = x.reshape(bsz, h_, w_, c, p, p)
|
| 281 |
+
x = torch.einsum('nhwcpq->nchpwq', x)
|
| 282 |
+
x = x.reshape(bsz, c, h_ * p, w_ * p)
|
| 283 |
+
return x # [n, c, h, w]
|
| 284 |
+
|
| 285 |
+
def forward(
|
| 286 |
+
self,
|
| 287 |
+
images,
|
| 288 |
+
class_id,
|
| 289 |
+
cached=False
|
| 290 |
+
):
|
| 291 |
+
if cached:
|
| 292 |
+
vae_latent = images
|
| 293 |
+
else:
|
| 294 |
+
vae_latent, _, _, _ = self.vae.encode(images) # b c h w
|
| 295 |
+
|
| 296 |
+
if self.parallel_mode == 'standard':
|
| 297 |
+
vae_latent = self.patchify(vae_latent)
|
| 298 |
+
elif self.parallel_mode == 'patch':
|
| 299 |
+
vae_latent = patchify_raster(vae_latent, int(self.parallel_num ** 0.5))
|
| 300 |
+
else:
|
| 301 |
+
raise NotImplementedError(f"unknown parallel_mode {self.parallel_mode}")
|
| 302 |
+
x = vae_latent.clone().detach()
|
| 303 |
+
if self.training:
|
| 304 |
+
if self.perturb_schedule =="constant":
|
| 305 |
+
x = flip_tensor_elements_uniform_prob(x, self.perturb_rate)
|
| 306 |
+
else:
|
| 307 |
+
raise NotImplementedError(f"unknown perturb_schedule {self.perturb_schedule}")
|
| 308 |
+
x = self.proj_in(x[:, :-self.parallel_num, :])
|
| 309 |
+
class_id = self.drop_label(class_id)
|
| 310 |
+
bsz = x.shape[0]
|
| 311 |
+
c = self.cls_embedding(class_id).view(bsz, self.cls_token_num, -1)
|
| 312 |
+
query_token = self.query_token.repeat(bsz, 1, 1)
|
| 313 |
+
x = torch.cat([c, query_token, x], dim=1)
|
| 314 |
+
x = self.emb_norm(x)
|
| 315 |
+
|
| 316 |
+
if self.grad_checkpointing and self.training:
|
| 317 |
+
for layer in self.layers:
|
| 318 |
+
block = partial(layer.forward, mask=self.attn_mask, freqs_cis=self.freqs_cis)
|
| 319 |
+
x = checkpoint(block, x, use_reentrant=False)
|
| 320 |
+
else:
|
| 321 |
+
for layer in self.layers:
|
| 322 |
+
x = layer(x, self.attn_mask, self.freqs_cis)
|
| 323 |
+
|
| 324 |
+
x = x[:, -self.h * self.w :, :]
|
| 325 |
+
x = self.norm(x)
|
| 326 |
+
x = x + self.pos_for_diff.weight
|
| 327 |
+
|
| 328 |
+
target = vae_latent.clone().detach()
|
| 329 |
+
x = x.view(-1, self.parallel_num, x.shape[-1])
|
| 330 |
+
target = target.view(-1, self.parallel_num, target.shape[-1])
|
| 331 |
+
|
| 332 |
+
x = x.repeat(self.diff_batch_mul, 1, 1)
|
| 333 |
+
target = target.repeat(self.diff_batch_mul, 1, 1)
|
| 334 |
+
loss = self.head(target, x)
|
| 335 |
+
|
| 336 |
+
return loss
|
| 337 |
+
|
| 338 |
+
def enable_kv_cache(self, bsz):
|
| 339 |
+
for layer in self.layers:
|
| 340 |
+
layer.attention.enable_kv_cache(bsz, self.total_tokens)
|
| 341 |
+
|
| 342 |
+
@torch.compile()
|
| 343 |
+
def forward_model(self, x, mask, start_pos, end_pos):
|
| 344 |
+
x = self.emb_norm(x)
|
| 345 |
+
for layer in self.layers:
|
| 346 |
+
x = layer.forward_onestep(
|
| 347 |
+
x, mask, self.freqs_cis[start_pos:end_pos,], start_pos, end_pos
|
| 348 |
+
)
|
| 349 |
+
x = self.norm(x)
|
| 350 |
+
return x
|
| 351 |
+
|
| 352 |
+
def head_sample(self, x, diff_pos, sample_steps, cfg_scale, cfg_schedule="linear"):
|
| 353 |
+
x = x + self.pos_for_diff.weight[diff_pos*self.parallel_num : (diff_pos+1)*self.parallel_num, :]
|
| 354 |
+
# x = x.view(-1, x.shape[-1])
|
| 355 |
+
seq_len = self.h * self.w // self.parallel_num
|
| 356 |
+
if cfg_scale > 1.0:
|
| 357 |
+
if cfg_schedule == "constant":
|
| 358 |
+
cfg_iter = cfg_scale
|
| 359 |
+
elif cfg_schedule == "linear":
|
| 360 |
+
start = 1.0
|
| 361 |
+
cfg_iter = start + (cfg_scale - start) * diff_pos / seq_len
|
| 362 |
+
else:
|
| 363 |
+
raise NotImplementedError(f"unknown cfg_schedule {cfg_schedule}")
|
| 364 |
+
else:
|
| 365 |
+
cfg_iter = 1.0
|
| 366 |
+
pred = self.head.sample(x, num_sampling_steps=sample_steps, cfg=cfg_iter)
|
| 367 |
+
# Important: LFQ here, sign the prediction
|
| 368 |
+
pred = torch.sign(pred)
|
| 369 |
+
return pred
|
| 370 |
+
|
| 371 |
+
@torch.no_grad()
|
| 372 |
+
def sample(self, cond, sample_steps, cfg_scale=1.0, cfg_schedule="linear", chunk_size=0):
|
| 373 |
+
self.eval()
|
| 374 |
+
if cfg_scale > 1.0:
|
| 375 |
+
cond_null = torch.ones_like(cond) * self.num_classes
|
| 376 |
+
cond_combined = torch.cat([cond, cond_null])
|
| 377 |
+
else:
|
| 378 |
+
cond_combined = cond
|
| 379 |
+
bsz = cond_combined.shape[0]
|
| 380 |
+
act_bsz = bsz // 2 if cfg_scale > 1.0 else bsz
|
| 381 |
+
self.enable_kv_cache(bsz)
|
| 382 |
+
|
| 383 |
+
c = self.cls_embedding(cond_combined).view(bsz, self.cls_token_num, -1)
|
| 384 |
+
last_pred = None
|
| 385 |
+
all_preds = []
|
| 386 |
+
for i in range(self.h * self.w // self.parallel_num):
|
| 387 |
+
if i == 0:
|
| 388 |
+
x = self.forward_model(torch.cat([c, self.query_token.repeat(bsz, 1, 1)], dim=1), self.attn_mask[:, :, :self.cls_token_num + self.parallel_num - 1, :self.cls_token_num + self.parallel_num - 1], 0, self.cls_token_num + self.parallel_num - 1)
|
| 389 |
+
else:
|
| 390 |
+
x = self.proj_in(last_pred)
|
| 391 |
+
start_pos = self.parallel_num * (i-1) + self.cls_token_num + self.parallel_num - 1
|
| 392 |
+
x = self.forward_model(
|
| 393 |
+
x,
|
| 394 |
+
self.attn_mask[:, :, start_pos : start_pos + self.parallel_num, : start_pos + self.parallel_num],
|
| 395 |
+
start_pos,
|
| 396 |
+
start_pos + self.parallel_num
|
| 397 |
+
)
|
| 398 |
+
|
| 399 |
+
last_pred = self.head_sample(
|
| 400 |
+
x[:, -self.parallel_num:, :],
|
| 401 |
+
i,
|
| 402 |
+
sample_steps,
|
| 403 |
+
cfg_scale,
|
| 404 |
+
cfg_schedule,
|
| 405 |
+
)
|
| 406 |
+
all_preds.append(last_pred)
|
| 407 |
+
|
| 408 |
+
x = torch.cat(all_preds, dim=-2)[:act_bsz]
|
| 409 |
+
if x.dim() == 3: #b n c -> b c h w
|
| 410 |
+
if self.parallel_mode == 'standard':
|
| 411 |
+
x = self.unpatchify(x)
|
| 412 |
+
elif self.parallel_mode == 'patch':
|
| 413 |
+
x = unpatchify_raster(x, int(self.parallel_num ** 0.5), (self.h, self.w))
|
| 414 |
+
# recon = self.vae.decode(x)
|
| 415 |
+
if chunk_size > 0:
|
| 416 |
+
recon = self.decode_in_chunks(x, chunk_size)
|
| 417 |
+
else:
|
| 418 |
+
recon = self.vae.decode(x)
|
| 419 |
+
return recon
|
| 420 |
+
|
| 421 |
+
def decode_in_chunks(self, latent_tensor, chunk_size=64):
|
| 422 |
+
total_bsz = latent_tensor.shape[0]
|
| 423 |
+
recon_chunks_on_cpu = []
|
| 424 |
+
with torch.no_grad():
|
| 425 |
+
for i in range(0, total_bsz, chunk_size):
|
| 426 |
+
end_idx = min(i + chunk_size, total_bsz)
|
| 427 |
+
latent_chunk = latent_tensor[i:end_idx]
|
| 428 |
+
recon_chunk = self.vae.decode(latent_chunk)
|
| 429 |
+
recon_chunks_on_cpu.append(recon_chunk.cpu())
|
| 430 |
+
return torch.cat(recon_chunks_on_cpu, dim=0)
|
| 431 |
+
|
| 432 |
+
def get_fsdp_wrap_module_list(self):
|
| 433 |
+
return list(self.layers)
|
| 434 |
+
|
| 435 |
+
def BitDance_H(**kwargs):
|
| 436 |
+
return BitDance(
|
| 437 |
+
n_layer=40,
|
| 438 |
+
n_head=20,
|
| 439 |
+
dim=1280,
|
| 440 |
+
diff_layers=12,
|
| 441 |
+
diff_dim=1280,
|
| 442 |
+
diff_adanln_layers=3,
|
| 443 |
+
**kwargs,
|
| 444 |
+
)
|
| 445 |
+
|
| 446 |
+
|
| 447 |
+
def BitDance_L(**kwargs):
|
| 448 |
+
return BitDance(
|
| 449 |
+
n_layer=32,
|
| 450 |
+
n_head=16,
|
| 451 |
+
dim=1024,
|
| 452 |
+
diff_layers=8,
|
| 453 |
+
diff_dim=1024,
|
| 454 |
+
diff_adanln_layers=2,
|
| 455 |
+
**kwargs,
|
| 456 |
+
)
|
| 457 |
+
|
| 458 |
+
|
| 459 |
+
def BitDance_B(**kwargs):
|
| 460 |
+
return BitDance(
|
| 461 |
+
n_layer=24,
|
| 462 |
+
n_head=12,
|
| 463 |
+
dim=768,
|
| 464 |
+
diff_layers=6,
|
| 465 |
+
diff_dim=768,
|
| 466 |
+
diff_adanln_layers=2,
|
| 467 |
+
**kwargs,
|
| 468 |
+
)
|
| 469 |
+
|
| 470 |
+
|
| 471 |
+
BitDance_models = {
|
| 472 |
+
"BitDance-B": BitDance_B,
|
| 473 |
+
"BitDance-L": BitDance_L,
|
| 474 |
+
"BitDance-H": BitDance_H,
|
| 475 |
+
}
|