Update all files for BitDance-ImageNet-diffusers
Browse files
BitDance_L_1x/transformer/layers_parallel.py
ADDED
|
@@ -0,0 +1,290 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from functools import lru_cache
|
| 2 |
+
from typing import Optional
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
|
| 7 |
+
from torch.nn import RMSNorm
|
| 8 |
+
from torch.nn import functional as F
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def drop_path(
|
| 12 |
+
x, drop_prob: float = 0.0, training: bool = False, scale_by_keep: bool = True
|
| 13 |
+
):
|
| 14 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
| 15 |
+
|
| 16 |
+
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
|
| 17 |
+
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
| 18 |
+
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
|
| 19 |
+
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
|
| 20 |
+
'survival rate' as the argument.
|
| 21 |
+
|
| 22 |
+
"""
|
| 23 |
+
if drop_prob == 0.0 or not training:
|
| 24 |
+
return x
|
| 25 |
+
keep_prob = 1 - drop_prob
|
| 26 |
+
shape = (x.shape[0],) + (1,) * (
|
| 27 |
+
x.ndim - 1
|
| 28 |
+
) # work with diff dim tensors, not just 2D ConvNets
|
| 29 |
+
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
|
| 30 |
+
if keep_prob > 0.0 and scale_by_keep:
|
| 31 |
+
random_tensor.div_(keep_prob)
|
| 32 |
+
return x * random_tensor
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class DropPath(torch.nn.Module):
|
| 36 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
| 37 |
+
|
| 38 |
+
def __init__(self, drop_prob: float = 0.0, scale_by_keep: bool = True):
|
| 39 |
+
super(DropPath, self).__init__()
|
| 40 |
+
self.drop_prob = drop_prob
|
| 41 |
+
self.scale_by_keep = scale_by_keep
|
| 42 |
+
|
| 43 |
+
def forward(self, x):
|
| 44 |
+
return drop_path(x, self.drop_prob, self.training, self.scale_by_keep)
|
| 45 |
+
|
| 46 |
+
def extra_repr(self):
|
| 47 |
+
return f"drop_prob={round(self.drop_prob,3):0.3f}"
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def find_multiple(n: int, k: int):
|
| 51 |
+
if n % k == 0:
|
| 52 |
+
return n
|
| 53 |
+
return n + k - (n % k)
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
@lru_cache(maxsize=16)
|
| 57 |
+
def get_causal_mask(seq_q, seq_k, device):
|
| 58 |
+
offset = seq_k - seq_q
|
| 59 |
+
i = torch.arange(seq_q, device=device).unsqueeze(1)
|
| 60 |
+
j = torch.arange(seq_k, device=device).unsqueeze(0)
|
| 61 |
+
causal_mask = (j > (offset + i)).bool()
|
| 62 |
+
causal_mask = causal_mask.unsqueeze(0).unsqueeze(0)
|
| 63 |
+
return causal_mask
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
class Attention(nn.Module):
|
| 67 |
+
def __init__(
|
| 68 |
+
self,
|
| 69 |
+
dim,
|
| 70 |
+
n_head,
|
| 71 |
+
attn_dropout_p,
|
| 72 |
+
resid_dropout_p,
|
| 73 |
+
# causal: bool = True,
|
| 74 |
+
):
|
| 75 |
+
super().__init__()
|
| 76 |
+
assert dim % n_head == 0
|
| 77 |
+
self.dim = dim
|
| 78 |
+
self.head_dim = dim // n_head
|
| 79 |
+
self.scale = self.head_dim**-0.5
|
| 80 |
+
self.n_head = n_head
|
| 81 |
+
total_kv_dim = (self.n_head * 3) * self.head_dim
|
| 82 |
+
|
| 83 |
+
self.wqkv = nn.Linear(dim, total_kv_dim, bias=False)
|
| 84 |
+
self.wo = nn.Linear(dim, dim, bias=False)
|
| 85 |
+
|
| 86 |
+
self.attn_dropout_p = attn_dropout_p
|
| 87 |
+
self.resid_dropout = nn.Dropout(resid_dropout_p)
|
| 88 |
+
# self.causal = causal
|
| 89 |
+
|
| 90 |
+
self.k_cache = None
|
| 91 |
+
self.v_cache = None
|
| 92 |
+
self.kv_cache_size = None
|
| 93 |
+
|
| 94 |
+
def enable_kv_cache(self, bsz, max_seq_len):
|
| 95 |
+
if self.kv_cache_size != (bsz, max_seq_len):
|
| 96 |
+
device = self.wo.weight.device
|
| 97 |
+
dtype = self.wo.weight.dtype
|
| 98 |
+
self.k_cache = torch.zeros(
|
| 99 |
+
(bsz, self.n_head, max_seq_len, self.head_dim),
|
| 100 |
+
device=device,
|
| 101 |
+
dtype=dtype,
|
| 102 |
+
)
|
| 103 |
+
self.v_cache = torch.zeros(
|
| 104 |
+
(bsz, self.n_head, max_seq_len, self.head_dim),
|
| 105 |
+
device=device,
|
| 106 |
+
dtype=dtype,
|
| 107 |
+
)
|
| 108 |
+
self.kv_cache_size = (bsz, max_seq_len)
|
| 109 |
+
|
| 110 |
+
def update_kv_cache(
|
| 111 |
+
self, start_pos, end_pos, keys: torch.Tensor, values: torch.Tensor
|
| 112 |
+
):
|
| 113 |
+
self.k_cache[:, :, start_pos:end_pos, :] = keys
|
| 114 |
+
self.v_cache[:, :, start_pos:end_pos, :] = values
|
| 115 |
+
return (
|
| 116 |
+
self.k_cache[:, :, :end_pos, :],
|
| 117 |
+
self.v_cache[:, :, :end_pos, :],
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
def naive_attention(self, xq, keys, values, mask):
|
| 121 |
+
xq = xq * self.scale
|
| 122 |
+
# q: [B, H, 1, D], k: [B, H, D, L] -> attn [B, H, 1, L]
|
| 123 |
+
attn = xq @ keys.transpose(-1, -2)
|
| 124 |
+
seq_q, seq_k = attn.shape[-2], attn.shape[-1]
|
| 125 |
+
if seq_q > 1:
|
| 126 |
+
# causal_mask = get_causal_mask(seq_q, seq_k, attn.device)
|
| 127 |
+
# attn.masked_fill_(mask, float("-inf"))
|
| 128 |
+
attn = attn + mask
|
| 129 |
+
attn = torch.softmax(attn, dim=-1)
|
| 130 |
+
if self.attn_dropout_p > 0 and self.training:
|
| 131 |
+
attn = F.dropout(attn, p=self.attn_dropout_p, training=self.training)
|
| 132 |
+
# [B, H, 1, L] @ [B, H, L, D] -> [B, H, 1, D]
|
| 133 |
+
return attn @ values
|
| 134 |
+
|
| 135 |
+
def forward(
|
| 136 |
+
self,
|
| 137 |
+
x: torch.Tensor,
|
| 138 |
+
mask: torch.Tensor,
|
| 139 |
+
freqs_cis: torch.Tensor = None,
|
| 140 |
+
start_pos: Optional[int] = None,
|
| 141 |
+
end_pos: Optional[int] = None,
|
| 142 |
+
):
|
| 143 |
+
bsz, seqlen, _ = x.shape
|
| 144 |
+
xq, xk, xv = self.wqkv(x).chunk(3, dim=-1)
|
| 145 |
+
|
| 146 |
+
xq = xq.view(bsz, seqlen, self.n_head, self.head_dim)
|
| 147 |
+
xk = xk.view(bsz, seqlen, self.n_head, self.head_dim)
|
| 148 |
+
xv = xv.view(bsz, seqlen, self.n_head, self.head_dim)
|
| 149 |
+
|
| 150 |
+
if freqs_cis is not None:
|
| 151 |
+
xq = apply_rotary_emb(xq, freqs_cis)
|
| 152 |
+
xk = apply_rotary_emb(xk, freqs_cis)
|
| 153 |
+
|
| 154 |
+
# is_causal = self.causal
|
| 155 |
+
if self.k_cache is not None and start_pos is not None:
|
| 156 |
+
xq, xk, xv = map(lambda x: x.transpose(1, 2), (xq, xk, xv))
|
| 157 |
+
keys, values = self.update_kv_cache(start_pos, end_pos, xk, xv)
|
| 158 |
+
output = self.naive_attention(xq, keys, values, mask)
|
| 159 |
+
output = output.transpose(1, 2).contiguous()
|
| 160 |
+
else:
|
| 161 |
+
xq, xk, xv = map(lambda x: x.transpose(1, 2), (xq, xk, xv))
|
| 162 |
+
output = F.scaled_dot_product_attention(xq, xk, xv, attn_mask=mask, is_causal=False)
|
| 163 |
+
output = output.transpose(1, 2).contiguous()
|
| 164 |
+
|
| 165 |
+
output = output.view(bsz, seqlen, self.dim)
|
| 166 |
+
|
| 167 |
+
output = self.resid_dropout(self.wo(output))
|
| 168 |
+
return output
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
class FeedForward(nn.Module):
|
| 172 |
+
|
| 173 |
+
def __init__(self, dim, dropout_p=0.1, mlp_ratio=4.0):
|
| 174 |
+
super().__init__()
|
| 175 |
+
hidden_dim = mlp_ratio * dim
|
| 176 |
+
hidden_dim = int(2 * hidden_dim / 3)
|
| 177 |
+
hidden_dim = find_multiple(hidden_dim, 256)
|
| 178 |
+
|
| 179 |
+
self.w1 = nn.Linear(dim, hidden_dim * 2, bias=False)
|
| 180 |
+
self.w2 = nn.Linear(hidden_dim, dim, bias=False)
|
| 181 |
+
self.ffn_dropout = nn.Dropout(dropout_p)
|
| 182 |
+
|
| 183 |
+
def forward(self, x):
|
| 184 |
+
h1, h2 = self.w1(x).chunk(2, dim=-1)
|
| 185 |
+
return self.ffn_dropout(self.w2(F.silu(h1) * h2))
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
class TransformerBlock(nn.Module):
|
| 189 |
+
def __init__(
|
| 190 |
+
self,
|
| 191 |
+
dim,
|
| 192 |
+
n_head,
|
| 193 |
+
attn_dropout_p: float = 0.0,
|
| 194 |
+
resid_dropout_p: float = 0.0,
|
| 195 |
+
drop_path: float = 0.0,
|
| 196 |
+
# causal: bool = True,
|
| 197 |
+
):
|
| 198 |
+
super().__init__()
|
| 199 |
+
self.attention = Attention(
|
| 200 |
+
dim=dim,
|
| 201 |
+
n_head=n_head,
|
| 202 |
+
attn_dropout_p=attn_dropout_p,
|
| 203 |
+
resid_dropout_p=resid_dropout_p,
|
| 204 |
+
# causal=causal,
|
| 205 |
+
)
|
| 206 |
+
self.feed_forward = FeedForward(
|
| 207 |
+
dim=dim,
|
| 208 |
+
dropout_p=resid_dropout_p,
|
| 209 |
+
)
|
| 210 |
+
self.attention_norm = RMSNorm(dim, eps=1e-6)
|
| 211 |
+
self.ffn_norm = RMSNorm(dim, eps=1e-6)
|
| 212 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
| 213 |
+
|
| 214 |
+
def forward(
|
| 215 |
+
self,
|
| 216 |
+
x: torch.Tensor,
|
| 217 |
+
mask: torch.Tensor,
|
| 218 |
+
freqs_cis: torch.Tensor,
|
| 219 |
+
):
|
| 220 |
+
h = x + self.drop_path(self.attention(self.attention_norm(x), mask, freqs_cis))
|
| 221 |
+
out = h + self.drop_path(self.feed_forward(self.ffn_norm(h)))
|
| 222 |
+
return out
|
| 223 |
+
|
| 224 |
+
def forward_onestep(
|
| 225 |
+
self,
|
| 226 |
+
x: torch.Tensor,
|
| 227 |
+
mask: torch.Tensor,
|
| 228 |
+
freqs_cis: torch.Tensor,
|
| 229 |
+
start_pos: int,
|
| 230 |
+
end_pos: int,
|
| 231 |
+
):
|
| 232 |
+
h = x + self.drop_path(
|
| 233 |
+
self.attention(self.attention_norm(x), mask, freqs_cis, start_pos, end_pos)
|
| 234 |
+
)
|
| 235 |
+
out = h + self.drop_path(self.feed_forward(self.ffn_norm(h)))
|
| 236 |
+
return out
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
def get_2d_pos(resolution, patch_size, num_scales=1):
|
| 240 |
+
max_pos = resolution // patch_size
|
| 241 |
+
coords_list = []
|
| 242 |
+
|
| 243 |
+
for i in range(num_scales):
|
| 244 |
+
scale = 2 ** (num_scales - i - 1)
|
| 245 |
+
P = max(resolution // scale // patch_size, 1)
|
| 246 |
+
edge = float(max_pos) / P
|
| 247 |
+
centers = (torch.arange(P, dtype=torch.float32) + 0.5) * edge
|
| 248 |
+
grid_y, grid_x = torch.meshgrid(centers, centers, indexing="ij")
|
| 249 |
+
coords = torch.stack([grid_x.reshape(-1), grid_y.reshape(-1)], dim=1)
|
| 250 |
+
coords_list.append(coords)
|
| 251 |
+
|
| 252 |
+
return torch.cat(coords_list, dim=0)
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
def precompute_freqs_cis_2d(
|
| 256 |
+
pos_2d, n_elem: int, base: float = 10000, cls_token_num=120
|
| 257 |
+
):
|
| 258 |
+
# split the dimension into half, one for x and one for y
|
| 259 |
+
half_dim = n_elem // 2
|
| 260 |
+
freqs = 1.0 / (
|
| 261 |
+
base ** (torch.arange(0, half_dim, 2)[: (half_dim // 2)].float() / half_dim)
|
| 262 |
+
)
|
| 263 |
+
t = pos_2d + 1.0
|
| 264 |
+
if cls_token_num > 0:
|
| 265 |
+
t = torch.cat(
|
| 266 |
+
[torch.zeros((cls_token_num, 2), device=freqs.device), t],
|
| 267 |
+
dim=0,
|
| 268 |
+
)
|
| 269 |
+
freqs = torch.outer(t.flatten(), freqs).view(*t.shape[:-1], -1)
|
| 270 |
+
return torch.stack([torch.cos(freqs), torch.sin(freqs)], dim=-1)
|
| 271 |
+
|
| 272 |
+
|
| 273 |
+
def apply_rotary_emb(x: torch.Tensor, freqs_cis: torch.Tensor):
|
| 274 |
+
# x: (bs, seq_len, n_head, head_dim)
|
| 275 |
+
# freqs_cis (seq_len, head_dim // 2, 2)
|
| 276 |
+
xshaped = x.float().reshape(
|
| 277 |
+
*x.shape[:-1], -1, 2
|
| 278 |
+
) # (bs, seq_len, n_head, head_dim//2, 2)
|
| 279 |
+
freqs_cis = freqs_cis.view(
|
| 280 |
+
1, xshaped.size(1), 1, xshaped.size(3), 2
|
| 281 |
+
) # (1, seq_len, 1, head_dim//2, 2)
|
| 282 |
+
x_out2 = torch.stack(
|
| 283 |
+
[
|
| 284 |
+
xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1],
|
| 285 |
+
xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1],
|
| 286 |
+
],
|
| 287 |
+
dim=-1,
|
| 288 |
+
)
|
| 289 |
+
x_out2 = x_out2.flatten(3)
|
| 290 |
+
return x_out2.type_as(x)
|