BiliSakura commited on
Commit
3ca8310
·
verified ·
1 Parent(s): 6a56bf0

Update all files for BitDance-ImageNet-diffusers

Browse files
BitDance_B_16x/transformer/modeling_transformer.py ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import json
4
+ from pathlib import Path
5
+
6
+ import torch
7
+ from safetensors.torch import load_file as load_safetensors
8
+
9
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
10
+ from diffusers.models.modeling_utils import ModelMixin
11
+
12
+ # NOTE: Diffusers dynamic module loader only copies directly-referenced relative imports.
13
+ # These guarded imports are intentionally never executed, but they force dependent files
14
+ # (and their siblings) to be copied into the dynamic module cache.
15
+ if False: # pragma: no cover
16
+ from .model import BitDance_B as _BD_B_STD
17
+ from .model import BitDance_H as _BD_H_STD
18
+ from .model import BitDance_L as _BD_L_STD
19
+ from .model_parallel import BitDance_B as _BD_B_PAR
20
+ from .model_parallel import BitDance_H as _BD_H_PAR
21
+ from .model_parallel import BitDance_L as _BD_L_PAR
22
+ from .diff_head import DiffHead as _DiffHead
23
+ from .diff_head_parallel import DiffHead as _DiffHeadParallel
24
+ from .layers import TransformerBlock as _TB
25
+ from .layers_parallel import TransformerBlock as _TBP
26
+ from .qae import VQModel as _VQ
27
+ from .gfq import GFQ as _GFQ
28
+ from .sampling import euler_maruyama as _EM
29
+ from .sampling_parallel import euler_maruyama as _EMP
30
+ from .utils import patchify_raster as _PR
31
+
32
+
33
+ class BitDanceImageNetTransformer(ModelMixin, ConfigMixin):
34
+ @register_to_config
35
+ def __init__(
36
+ self,
37
+ architecture: str,
38
+ parallel_num: int,
39
+ resolution: int,
40
+ down_size: int,
41
+ latent_dim: int,
42
+ num_classes: int,
43
+ runtime_impl: str,
44
+ parallel_mode: str = "patch",
45
+ time_schedule: str = "logit_normal",
46
+ time_shift: float = 1.0,
47
+ p_std: float = 1.0,
48
+ p_mean: float = 0.0,
49
+ ):
50
+ super().__init__()
51
+
52
+ kwargs = dict(
53
+ resolution=resolution,
54
+ down_size=down_size,
55
+ patch_size=1,
56
+ latent_dim=latent_dim,
57
+ diff_batch_mul=4,
58
+ cls_token_num=64,
59
+ num_classes=num_classes,
60
+ grad_checkpointing=False,
61
+ trained_vae="",
62
+ drop_rate=0.0,
63
+ perturb_schedule="constant",
64
+ perturb_rate=0.0,
65
+ perturb_rate_max=0.3,
66
+ time_schedule=time_schedule,
67
+ time_shift=time_shift,
68
+ P_std=p_std,
69
+ P_mean=p_mean,
70
+ )
71
+
72
+ if runtime_impl == "model_parallel.py" or parallel_num > 1:
73
+ from .model_parallel import BitDance_B, BitDance_H, BitDance_L
74
+
75
+ ctors = {"BitDance-B": BitDance_B, "BitDance-L": BitDance_L, "BitDance-H": BitDance_H}
76
+ kwargs.update(parallel_num=parallel_num, parallel_mode=parallel_mode)
77
+ else:
78
+ from .model import BitDance_B, BitDance_H, BitDance_L
79
+
80
+ ctors = {"BitDance-B": BitDance_B, "BitDance-L": BitDance_L, "BitDance-H": BitDance_H}
81
+
82
+ self.runtime_model = ctors[architecture](**kwargs)
83
+
84
+ @classmethod
85
+ def from_pretrained(cls, pretrained_model_name_or_path: str, *args, **kwargs):
86
+ del args, kwargs
87
+ model_dir = Path(pretrained_model_name_or_path)
88
+ config = json.loads((model_dir / "config.json").read_text(encoding="utf-8"))
89
+ model = cls(
90
+ architecture=config["architecture"],
91
+ parallel_num=int(config["parallel_num"]),
92
+ resolution=int(config["resolution"]),
93
+ down_size=int(config["down_size"]),
94
+ latent_dim=int(config["latent_dim"]),
95
+ num_classes=int(config["num_classes"]),
96
+ runtime_impl=config["runtime_impl"],
97
+ parallel_mode=config.get("parallel_mode", "patch"),
98
+ time_schedule=config.get("time_schedule", "logit_normal"),
99
+ time_shift=float(config.get("time_shift", 1.0)),
100
+ p_std=float(config.get("p_std", 1.0)),
101
+ p_mean=float(config.get("p_mean", 0.0)),
102
+ )
103
+ state = load_safetensors(model_dir / "diffusion_pytorch_model.safetensors")
104
+ model.runtime_model.load_state_dict(state, strict=True)
105
+ model.eval()
106
+ return model
107
+
108
+ @torch.no_grad()
109
+ def sample(
110
+ self,
111
+ class_ids: torch.Tensor,
112
+ sample_steps: int = 100,
113
+ cfg_scale: float = 4.6,
114
+ chunk_size: int = 0,
115
+ ) -> torch.Tensor:
116
+ return self.runtime_model.sample(
117
+ cond=class_ids,
118
+ sample_steps=sample_steps,
119
+ cfg_scale=cfg_scale,
120
+ chunk_size=chunk_size,
121
+ )
122
+
123
+ def forward(self, *args, **kwargs):
124
+ return self.runtime_model(*args, **kwargs)