|
|
import contextlib |
|
|
import io |
|
|
import math |
|
|
import os |
|
|
import pickle |
|
|
import tarfile |
|
|
from functools import lru_cache |
|
|
|
|
|
import numpy as np |
|
|
import torch |
|
|
from PIL import Image |
|
|
from torch.utils.data import Dataset |
|
|
from torchvision.datasets import ImageFolder |
|
|
import torchvision.datasets as datasets |
|
|
|
|
|
|
|
|
@contextlib.contextmanager |
|
|
def numpy_seed(seed, *addl_seeds): |
|
|
"""Context manager which seeds the NumPy PRNG with the specified seed and |
|
|
restores the state afterward""" |
|
|
if seed is None: |
|
|
yield |
|
|
return |
|
|
|
|
|
def check_seed(s): |
|
|
assert type(s) == int or type(s) == np.int32 or type(s) == np.int64 |
|
|
|
|
|
check_seed(seed) |
|
|
if len(addl_seeds) > 0: |
|
|
for s in addl_seeds: |
|
|
check_seed(s) |
|
|
seed = int(hash((seed, *addl_seeds)) % 1e8) |
|
|
state = np.random.get_state() |
|
|
np.random.seed(seed) |
|
|
try: |
|
|
yield |
|
|
finally: |
|
|
np.random.set_state(state) |
|
|
|
|
|
|
|
|
def build_flat_index(outer_path: str, idx_path: str): |
|
|
if os.path.exists(idx_path): |
|
|
print(f"Index file {idx_path} already exists. Skipping index building.") |
|
|
return pickle.load(open(idx_path, "rb")) |
|
|
entries = [] |
|
|
cats = set() |
|
|
idx = 0 |
|
|
with tarfile.open(outer_path, "r:") as outer: |
|
|
for sub in outer.getmembers(): |
|
|
if not sub.isfile() or not sub.name.endswith(".tar"): |
|
|
continue |
|
|
outer_off = sub.offset_data |
|
|
sub_fobj = outer.extractfile(sub) |
|
|
with tarfile.open(fileobj=sub_fobj, mode="r:") as inner: |
|
|
for m in inner.getmembers(): |
|
|
if not m.isfile(): |
|
|
continue |
|
|
cat = m.name.split("_", 1)[0] |
|
|
cats.add(cat) |
|
|
abs_off = outer_off + m.offset_data |
|
|
entries.append((abs_off, m.size, cat)) |
|
|
if idx % 1000 == 1: |
|
|
print(idx, m.name, abs_off, m.size, cat) |
|
|
idx += 1 |
|
|
sorted_cats = sorted(cats) |
|
|
cat2idx = {c: i for i, c in enumerate(sorted_cats)} |
|
|
|
|
|
flat = [(off, size, cat2idx[c]) for off, size, c in entries] |
|
|
|
|
|
os.makedirs(os.path.dirname(idx_path), exist_ok=True) |
|
|
with open(idx_path, "wb") as f: |
|
|
pickle.dump( |
|
|
flat, |
|
|
f, |
|
|
) |
|
|
print(f"Built flat index with {len(flat)} images.") |
|
|
return flat |
|
|
|
|
|
|
|
|
class ImageNetTarDataset(Dataset): |
|
|
""" |
|
|
ImageNet dataset stored in a tar file, avoid to decompress the whole dataset. |
|
|
You can direct use the original downloaded tar file (ILSVRC2012_img_train.tar) from official ImageNet website. |
|
|
The best practice is to copy the tar file to node's local disk or ramdisk (like /dev/shm/) first, to avoid remote I/O bottleneck. |
|
|
""" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
tar_file, |
|
|
): |
|
|
self.tar_file = tar_file |
|
|
self.tar_handle = None |
|
|
self.files = build_flat_index(tar_file, tar_file + ".index") |
|
|
self.num_examples = len(self.files) |
|
|
|
|
|
def __len__(self): |
|
|
return self.num_examples |
|
|
|
|
|
def get_raw_image(self, index): |
|
|
if self.tar_handle is None: |
|
|
self.tar_handle = open(self.tar_file, "rb") |
|
|
|
|
|
offset, size, label = self.files[index] |
|
|
self.tar_handle.seek(offset) |
|
|
data = self.tar_handle.read(size) |
|
|
image = Image.open(io.BytesIO(data)).convert("RGB") |
|
|
return image, label |
|
|
|
|
|
@lru_cache(maxsize=16) |
|
|
def __getitem__(self, idx): |
|
|
return self.get_raw_image(idx) |
|
|
|
|
|
|
|
|
def center_crop_arr(pil_image, image_size): |
|
|
""" |
|
|
Center cropping implementation from ADM. |
|
|
https://github.com/openai/guided-diffusion/blob/8fb3ad9197f16bbc40620447b2742e13458d2831/guided_diffusion/image_datasets.py#L126 |
|
|
""" |
|
|
while min(*pil_image.size) >= 2 * image_size: |
|
|
pil_image = pil_image.resize( |
|
|
tuple(x // 2 for x in pil_image.size), resample=Image.BOX |
|
|
) |
|
|
|
|
|
scale = image_size / min(*pil_image.size) |
|
|
pil_image = pil_image.resize( |
|
|
tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC |
|
|
) |
|
|
|
|
|
arr = np.array(pil_image) |
|
|
crop_y = (arr.shape[0] - image_size) // 2 |
|
|
crop_x = (arr.shape[1] - image_size) // 2 |
|
|
return Image.fromarray( |
|
|
arr[crop_y : crop_y + image_size, crop_x : crop_x + image_size] |
|
|
) |
|
|
|
|
|
|
|
|
def numpy_randrange(start, end): |
|
|
return int(np.random.randint(start, end)) |
|
|
|
|
|
|
|
|
def random_crop_arr(pil_image, image_size, min_crop_frac=0.8, max_crop_frac=1.0): |
|
|
min_smaller_dim_size = math.ceil(image_size / max_crop_frac) |
|
|
max_smaller_dim_size = math.ceil(image_size / min_crop_frac) |
|
|
smaller_dim_size = numpy_randrange(min_smaller_dim_size, max_smaller_dim_size + 1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
while min(*pil_image.size) >= 2 * smaller_dim_size: |
|
|
pil_image = pil_image.resize( |
|
|
tuple(x // 2 for x in pil_image.size), resample=Image.BOX |
|
|
) |
|
|
|
|
|
scale = smaller_dim_size / min(*pil_image.size) |
|
|
pil_image = pil_image.resize( |
|
|
tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC |
|
|
) |
|
|
|
|
|
arr = np.array(pil_image) |
|
|
crop_y = numpy_randrange(0, arr.shape[0] - image_size + 1) |
|
|
crop_x = numpy_randrange(0, arr.shape[1] - image_size + 1) |
|
|
return Image.fromarray( |
|
|
arr[crop_y : crop_y + image_size, crop_x : crop_x + image_size] |
|
|
) |
|
|
|
|
|
|
|
|
def crop(pil_image, left, top, right, bottom): |
|
|
""" |
|
|
Crop the image to the specified box. |
|
|
""" |
|
|
return pil_image.crop((left, top, right, bottom)) |
|
|
|
|
|
|
|
|
class ImageCropDataset(Dataset): |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
raw_dataset, |
|
|
resolution, |
|
|
patch_size, |
|
|
seed=42, |
|
|
): |
|
|
self.raw_dataset = raw_dataset |
|
|
self.resolution = resolution |
|
|
self.patch_size = patch_size |
|
|
self.aug_ratio = 1.0 |
|
|
self.seed = seed |
|
|
self.epoch = None |
|
|
|
|
|
def set_epoch(self, epoch): |
|
|
self.epoch = epoch |
|
|
|
|
|
def set_aug_ratio(self, aug_ratio): |
|
|
self.aug_ratio = aug_ratio |
|
|
|
|
|
def __len__(self): |
|
|
return len(self.raw_dataset) |
|
|
|
|
|
def crop_and_flip(self, image): |
|
|
is_aug = np.random.rand() < self.aug_ratio |
|
|
if not is_aug: |
|
|
image = center_crop_arr(image, self.resolution) |
|
|
else: |
|
|
image = random_crop_arr(image, self.resolution) |
|
|
|
|
|
arr = np.asarray(image) |
|
|
|
|
|
is_flip = int(np.random.randint(0, 2)) |
|
|
if is_flip == 1: |
|
|
|
|
|
arr = arr[:, ::-1, :] |
|
|
|
|
|
return arr.transpose(2, 0, 1) |
|
|
|
|
|
def __getitem__(self, idx): |
|
|
with numpy_seed(self.seed, self.epoch, idx): |
|
|
image, label = self.raw_dataset[idx] |
|
|
samples = self.crop_and_flip(image) |
|
|
|
|
|
samples = (samples.astype(np.float32) / 255.0 - 0.5) * 2.0 |
|
|
samples = torch.from_numpy(samples).float() |
|
|
return ( |
|
|
samples, |
|
|
torch.tensor(label).long(), |
|
|
) |
|
|
|
|
|
|
|
|
def build_dataset(args): |
|
|
|
|
|
raw_dataset = ( |
|
|
ImageNetTarDataset(args.data_path) |
|
|
if args.data_path.endswith(".tar") |
|
|
else ImageFolder(args.data_path) |
|
|
) |
|
|
return ImageCropDataset( |
|
|
raw_dataset, |
|
|
args.image_size, |
|
|
args.patch_size, |
|
|
seed=args.global_seed if hasattr(args, "global_seed") else 42, |
|
|
) |