BiliSakura's picture
Update all files for BitDance-ImageNet-diffusers
934b1db verified
import torch
import torch.nn as nn
from einops import rearrange
from .gfq import GFQ
def swish(x):
# swish
return x*torch.sigmoid(x)
class ResBlock(nn.Module):
def __init__(self,
in_filters,
out_filters,
use_conv_shortcut = False,
use_agn = False,
) -> None:
super().__init__()
self.in_filters = in_filters
self.out_filters = out_filters
self.use_conv_shortcut = use_conv_shortcut
self.use_agn = use_agn
if not use_agn: ## agn is GroupNorm likewise skip it if has agn before
self.norm1 = nn.GroupNorm(32, in_filters, eps=1e-6)
self.norm2 = nn.GroupNorm(32, out_filters, eps=1e-6)
self.conv1 = nn.Conv2d(in_filters, out_filters, kernel_size=(3, 3), padding=1, bias=False)
self.conv2 = nn.Conv2d(out_filters, out_filters, kernel_size=(3, 3), padding=1, bias=False)
if in_filters != out_filters:
if self.use_conv_shortcut:
self.conv_shortcut = nn.Conv2d(in_filters, out_filters, kernel_size=(3, 3), padding=1, bias=False)
else:
self.nin_shortcut = nn.Conv2d(in_filters, out_filters, kernel_size=(1, 1), padding=0, bias=False)
def forward(self, x, **kwargs):
residual = x
if not self.use_agn:
x = self.norm1(x)
x = swish(x)
x = self.conv1(x)
x = self.norm2(x)
x = swish(x)
x = self.conv2(x)
if self.in_filters != self.out_filters:
if self.use_conv_shortcut:
residual = self.conv_shortcut(residual)
else:
residual = self.nin_shortcut(residual)
return x + residual
class Encoder(nn.Module):
def __init__(self, *, ch, out_ch, in_channels, num_res_blocks, z_channels, ch_mult=(1, 2, 2, 4),
resolution=None, double_z=False,
):
super().__init__()
self.in_channels = in_channels
self.z_channels = z_channels
self.resolution = resolution
self.num_res_blocks = num_res_blocks
self.num_blocks = len(ch_mult)
self.conv_in = nn.Conv2d(in_channels,
ch,
kernel_size=(3, 3),
padding=1,
bias=False
)
## construct the model
self.down = nn.ModuleList()
in_ch_mult = (1,)+tuple(ch_mult)
for i_level in range(self.num_blocks):
block = nn.ModuleList()
block_in = ch*in_ch_mult[i_level] #[1, 1, 2, 2, 4]
block_out = ch*ch_mult[i_level] #[1, 2, 2, 4]
for _ in range(self.num_res_blocks):
block.append(ResBlock(block_in, block_out))
block_in = block_out
down = nn.Module()
down.block = block
if i_level < self.num_blocks - 1:
down.downsample = nn.Conv2d(block_out, block_out, kernel_size=(3, 3), stride=(2, 2), padding=1)
self.down.append(down)
### mid
self.mid_block = nn.ModuleList()
for res_idx in range(self.num_res_blocks):
self.mid_block.append(ResBlock(block_in, block_in))
### end
self.norm_out = nn.GroupNorm(32, block_out, eps=1e-6)
self.conv_out = nn.Conv2d(block_out, z_channels, kernel_size=(1, 1))
def forward(self, x):
## down
x = self.conv_in(x)
for i_level in range(self.num_blocks):
for i_block in range(self.num_res_blocks):
x = self.down[i_level].block[i_block](x)
if i_level < self.num_blocks - 1:
x = self.down[i_level].downsample(x)
## mid
for res in range(self.num_res_blocks):
x = self.mid_block[res](x)
x = self.norm_out(x)
x = swish(x)
x = self.conv_out(x)
return x
class Decoder(nn.Module):
def __init__(self, *, ch, out_ch, in_channels, num_res_blocks, z_channels, ch_mult=(1, 2, 2, 4),
resolution=None, double_z=False,) -> None:
super().__init__()
self.ch = ch
self.num_blocks = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_channels = in_channels
block_in = ch*ch_mult[self.num_blocks-1]
self.conv_in = nn.Conv2d(
z_channels, block_in, kernel_size=(3, 3), padding=1, bias=True
)
self.mid_block = nn.ModuleList()
for res_idx in range(self.num_res_blocks):
self.mid_block.append(ResBlock(block_in, block_in))
self.up = nn.ModuleList()
self.adaptive = nn.ModuleList()
for i_level in reversed(range(self.num_blocks)):
block = nn.ModuleList()
block_out = ch*ch_mult[i_level]
self.adaptive.insert(0, AdaptiveGroupNorm(z_channels, block_in))
for i_block in range(self.num_res_blocks):
block.append(ResBlock(block_in, block_out))
block_in = block_out
up = nn.Module()
up.block = block
if i_level > 0:
up.upsample = Upsampler(block_in)
self.up.insert(0, up)
self.norm_out = nn.GroupNorm(32, block_in, eps=1e-6)
self.conv_out = nn.Conv2d(block_in, out_ch, kernel_size=(3, 3), padding=1)
def forward(self, z):
style = z.clone() #for adaptive groupnorm
z = self.conv_in(z)
## mid
for res in range(self.num_res_blocks):
z = self.mid_block[res](z)
## upsample
for i_level in reversed(range(self.num_blocks)):
### pass in each resblock first adaGN
z = self.adaptive[i_level](z, style)
for i_block in range(self.num_res_blocks):
z = self.up[i_level].block[i_block](z)
if i_level > 0:
z = self.up[i_level].upsample(z)
z = self.norm_out(z)
z = swish(z)
z = self.conv_out(z)
return z
def depth_to_space(x: torch.Tensor, block_size: int) -> torch.Tensor:
""" Depth-to-Space DCR mode (depth-column-row) core implementation.
Args:
x (torch.Tensor): input tensor. The channels-first (*CHW) layout is supported.
block_size (int): block side size
"""
# check inputs
if x.dim() < 3:
raise ValueError(
f"Expecting a channels-first (*CHW) tensor of at least 3 dimensions"
)
c, h, w = x.shape[-3:]
s = block_size**2
if c % s != 0:
raise ValueError(
f"Expecting a channels-first (*CHW) tensor with C divisible by {s}, but got C={c} channels"
)
outer_dims = x.shape[:-3]
# splitting two additional dimensions from the channel dimension
x = x.view(-1, block_size, block_size, c // s, h, w)
# putting the two new dimensions along H and W
x = x.permute(0, 3, 4, 1, 5, 2)
# merging the two new dimensions with H and W
x = x.contiguous().view(*outer_dims, c // s, h * block_size,
w * block_size)
return x
class Upsampler(nn.Module):
def __init__(
self,
dim,
dim_out = None
):
super().__init__()
dim_out = dim * 4
self.conv1 = nn.Conv2d(dim, dim_out, (3, 3), padding=1)
self.depth2space = depth_to_space
def forward(self, x):
"""
input_image: [B C H W]
"""
out = self.conv1(x)
out = self.depth2space(out, block_size=2)
return out
class AdaptiveGroupNorm(nn.Module):
def __init__(self, z_channel, in_filters, num_groups=32, eps=1e-6):
super().__init__()
self.gn = nn.GroupNorm(num_groups=32, num_channels=in_filters, eps=eps, affine=False)
# self.lin = nn.Linear(z_channels, in_filters * 2)
self.gamma = nn.Linear(z_channel, in_filters)
self.beta = nn.Linear(z_channel, in_filters)
self.eps = eps
def forward(self, x, quantizer):
B, C, _, _ = x.shape
# quantizer = F.adaptive_avg_pool2d(quantizer, (1, 1))
### calcuate var for scale
scale = rearrange(quantizer, "b c h w -> b c (h w)")
scale = scale.var(dim=-1) + self.eps #not unbias
scale = scale.sqrt()
scale = self.gamma(scale).view(B, C, 1, 1)
### calculate mean for bias
bias = rearrange(quantizer, "b c h w -> b c (h w)")
bias = bias.mean(dim=-1)
bias = self.beta(bias).view(B, C, 1, 1)
x = self.gn(x)
x = scale * x + bias
return x
class GANDecoder(nn.Module):
def __init__(self, *, ch, out_ch, in_channels, num_res_blocks, z_channels, ch_mult=(1, 2, 2, 4),
resolution=None, double_z=False,) -> None:
super().__init__()
self.ch = ch
self.num_blocks = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_channels = in_channels
block_in = ch*ch_mult[self.num_blocks-1]
self.conv_in = nn.Conv2d(
z_channels * 2, block_in, kernel_size=(3, 3), padding=1, bias=True
)
self.mid_block = nn.ModuleList()
for res_idx in range(self.num_res_blocks):
self.mid_block.append(ResBlock(block_in, block_in))
self.up = nn.ModuleList()
self.adaptive = nn.ModuleList()
for i_level in reversed(range(self.num_blocks)):
block = nn.ModuleList()
block_out = ch*ch_mult[i_level]
self.adaptive.insert(0, AdaptiveGroupNorm(z_channels, block_in))
for i_block in range(self.num_res_blocks):
# if i_block == 0:
# block.append(ResBlock(block_in, block_out, use_agn=True))
# else:
block.append(ResBlock(block_in, block_out))
block_in = block_out
up = nn.Module()
up.block = block
if i_level > 0:
up.upsample = Upsampler(block_in)
self.up.insert(0, up)
self.norm_out = nn.GroupNorm(32, block_in, eps=1e-6)
self.conv_out = nn.Conv2d(block_in, out_ch, kernel_size=(3, 3), padding=1)
def forward(self, z):
style = z.clone() #for adaptive groupnorm
noise = torch.randn_like(z).to(z.device) #generate noise
z = torch.cat([z, noise], dim=1) #concat noise to the style vector
z = self.conv_in(z)
## mid
for res in range(self.num_res_blocks):
z = self.mid_block[res](z)
## upsample
for i_level in reversed(range(self.num_blocks)):
### pass in each resblock first adaGN
z = self.adaptive[i_level](z, style)
for i_block in range(self.num_res_blocks):
z = self.up[i_level].block[i_block](z)
if i_level > 0:
z = self.up[i_level].upsample(z)
z = self.norm_out(z)
z = swish(z)
z = self.conv_out(z)
return z
class VQModel(nn.Module):
def __init__(self,
ddconfig,
num_codebooks = 1,
sample_minimization_weight=1,
batch_maximization_weight=1,
gan_decoder = False,
# ckpt_path = None,
):
super().__init__()
self.encoder = Encoder(**ddconfig)
self.decoder = GANDecoder(**ddconfig) if gan_decoder else Decoder(**ddconfig)
self.quantize = GFQ(dim=ddconfig.get("z_channels", 32),
num_codebooks=num_codebooks,
sample_minimization_weight=sample_minimization_weight,
batch_maximization_weight=batch_maximization_weight,
)
def encode(self, x):
h = self.encoder(x)
(quant, emb_loss, info), loss_breakdown = self.quantize(h, return_loss_breakdown=True)
return quant, emb_loss, info, loss_breakdown
def decode(self, quant):
dec = self.decoder(quant)
return dec
def forward(self, input):
quant, _, _, loss_break = self.encode(input)
dec = self.decode(quant)
return dec, loss_break