|
|
from functools import lru_cache |
|
|
from typing import Optional |
|
|
|
|
|
import torch |
|
|
import torch.nn as nn |
|
|
|
|
|
try: |
|
|
from flash_attn import flash_attn_func as _flash_attn_func |
|
|
except ImportError: |
|
|
_flash_attn_func = None |
|
|
|
|
|
from torch.nn import RMSNorm |
|
|
from torch.nn import functional as F |
|
|
|
|
|
|
|
|
def flash_attn_func(q, k, v, causal, dropout_p): |
|
|
if _flash_attn_func is not None: |
|
|
return _flash_attn_func(q, k, v, causal=causal, dropout_p=dropout_p) |
|
|
|
|
|
|
|
|
qh = q.transpose(1, 2) |
|
|
kh = k.transpose(1, 2) |
|
|
vh = v.transpose(1, 2) |
|
|
out = F.scaled_dot_product_attention( |
|
|
qh, |
|
|
kh, |
|
|
vh, |
|
|
attn_mask=None, |
|
|
dropout_p=dropout_p, |
|
|
is_causal=causal, |
|
|
) |
|
|
return out.transpose(1, 2) |
|
|
|
|
|
|
|
|
def drop_path( |
|
|
x, drop_prob: float = 0.0, training: bool = False, scale_by_keep: bool = True |
|
|
): |
|
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). |
|
|
|
|
|
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, |
|
|
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... |
|
|
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for |
|
|
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use |
|
|
'survival rate' as the argument. |
|
|
|
|
|
""" |
|
|
if drop_prob == 0.0 or not training: |
|
|
return x |
|
|
keep_prob = 1 - drop_prob |
|
|
shape = (x.shape[0],) + (1,) * ( |
|
|
x.ndim - 1 |
|
|
) |
|
|
random_tensor = x.new_empty(shape).bernoulli_(keep_prob) |
|
|
if keep_prob > 0.0 and scale_by_keep: |
|
|
random_tensor.div_(keep_prob) |
|
|
return x * random_tensor |
|
|
|
|
|
|
|
|
class DropPath(torch.nn.Module): |
|
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" |
|
|
|
|
|
def __init__(self, drop_prob: float = 0.0, scale_by_keep: bool = True): |
|
|
super(DropPath, self).__init__() |
|
|
self.drop_prob = drop_prob |
|
|
self.scale_by_keep = scale_by_keep |
|
|
|
|
|
def forward(self, x): |
|
|
return drop_path(x, self.drop_prob, self.training, self.scale_by_keep) |
|
|
|
|
|
def extra_repr(self): |
|
|
return f"drop_prob={round(self.drop_prob,3):0.3f}" |
|
|
|
|
|
|
|
|
def find_multiple(n: int, k: int): |
|
|
if n % k == 0: |
|
|
return n |
|
|
return n + k - (n % k) |
|
|
|
|
|
|
|
|
@lru_cache(maxsize=16) |
|
|
def get_causal_mask(seq_q, seq_k, device): |
|
|
offset = seq_k - seq_q |
|
|
i = torch.arange(seq_q, device=device).unsqueeze(1) |
|
|
j = torch.arange(seq_k, device=device).unsqueeze(0) |
|
|
causal_mask = (j > (offset + i)).bool() |
|
|
causal_mask = causal_mask.unsqueeze(0).unsqueeze(0) |
|
|
return causal_mask |
|
|
|
|
|
|
|
|
class Attention(nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
dim, |
|
|
n_head, |
|
|
attn_dropout_p, |
|
|
resid_dropout_p, |
|
|
causal: bool = True, |
|
|
): |
|
|
super().__init__() |
|
|
assert dim % n_head == 0 |
|
|
self.dim = dim |
|
|
self.head_dim = dim // n_head |
|
|
self.scale = self.head_dim**-0.5 |
|
|
self.n_head = n_head |
|
|
total_kv_dim = (self.n_head * 3) * self.head_dim |
|
|
|
|
|
self.wqkv = nn.Linear(dim, total_kv_dim, bias=False) |
|
|
self.wo = nn.Linear(dim, dim, bias=False) |
|
|
|
|
|
self.attn_dropout_p = attn_dropout_p |
|
|
self.resid_dropout = nn.Dropout(resid_dropout_p) |
|
|
self.causal = causal |
|
|
|
|
|
self.k_cache = None |
|
|
self.v_cache = None |
|
|
self.kv_cache_size = None |
|
|
|
|
|
def enable_kv_cache(self, bsz, max_seq_len): |
|
|
if self.kv_cache_size != (bsz, max_seq_len): |
|
|
device = self.wo.weight.device |
|
|
dtype = self.wo.weight.dtype |
|
|
self.k_cache = torch.zeros( |
|
|
(bsz, self.n_head, max_seq_len, self.head_dim), |
|
|
device=device, |
|
|
dtype=dtype, |
|
|
) |
|
|
self.v_cache = torch.zeros( |
|
|
(bsz, self.n_head, max_seq_len, self.head_dim), |
|
|
device=device, |
|
|
dtype=dtype, |
|
|
) |
|
|
self.kv_cache_size = (bsz, max_seq_len) |
|
|
|
|
|
def update_kv_cache( |
|
|
self, start_pos, end_pos, keys: torch.Tensor, values: torch.Tensor |
|
|
): |
|
|
self.k_cache[:, :, start_pos:end_pos, :] = keys |
|
|
self.v_cache[:, :, start_pos:end_pos, :] = values |
|
|
return ( |
|
|
self.k_cache[:, :, :end_pos, :], |
|
|
self.v_cache[:, :, :end_pos, :], |
|
|
) |
|
|
|
|
|
def naive_attention(self, xq, keys, values, is_causal): |
|
|
xq = xq * self.scale |
|
|
|
|
|
attn = xq @ keys.transpose(-1, -2) |
|
|
seq_q, seq_k = attn.shape[-2], attn.shape[-1] |
|
|
if is_causal and seq_q > 1: |
|
|
causal_mask = get_causal_mask(seq_q, seq_k, attn.device) |
|
|
attn.masked_fill_(causal_mask, float("-inf")) |
|
|
attn = torch.softmax(attn, dim=-1) |
|
|
if self.attn_dropout_p > 0 and self.training: |
|
|
attn = F.dropout(attn, p=self.attn_dropout_p, training=self.training) |
|
|
|
|
|
return attn @ values |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
x: torch.Tensor, |
|
|
freqs_cis: torch.Tensor = None, |
|
|
start_pos: Optional[int] = None, |
|
|
end_pos: Optional[int] = None, |
|
|
): |
|
|
bsz, seqlen, _ = x.shape |
|
|
xq, xk, xv = self.wqkv(x).chunk(3, dim=-1) |
|
|
|
|
|
xq = xq.view(bsz, seqlen, self.n_head, self.head_dim) |
|
|
xk = xk.view(bsz, seqlen, self.n_head, self.head_dim) |
|
|
xv = xv.view(bsz, seqlen, self.n_head, self.head_dim) |
|
|
|
|
|
if freqs_cis is not None: |
|
|
xq = apply_rotary_emb(xq, freqs_cis) |
|
|
xk = apply_rotary_emb(xk, freqs_cis) |
|
|
|
|
|
is_causal = self.causal |
|
|
if self.k_cache is not None and start_pos is not None: |
|
|
xq, xk, xv = map(lambda x: x.transpose(1, 2), (xq, xk, xv)) |
|
|
keys, values = self.update_kv_cache(start_pos, end_pos, xk, xv) |
|
|
output = self.naive_attention(xq, keys, values, is_causal=is_causal) |
|
|
output = output.transpose(1, 2).contiguous() |
|
|
else: |
|
|
output = flash_attn_func( |
|
|
xq, |
|
|
xk, |
|
|
xv, |
|
|
causal=is_causal, |
|
|
dropout_p=self.attn_dropout_p if self.training else 0, |
|
|
) |
|
|
|
|
|
output = output.view(bsz, seqlen, self.dim) |
|
|
|
|
|
output = self.resid_dropout(self.wo(output)) |
|
|
return output |
|
|
|
|
|
|
|
|
class FeedForward(nn.Module): |
|
|
|
|
|
def __init__(self, dim, dropout_p=0.1, mlp_ratio=4.0): |
|
|
super().__init__() |
|
|
hidden_dim = mlp_ratio * dim |
|
|
hidden_dim = int(2 * hidden_dim / 3) |
|
|
hidden_dim = find_multiple(hidden_dim, 256) |
|
|
|
|
|
self.w1 = nn.Linear(dim, hidden_dim * 2, bias=False) |
|
|
self.w2 = nn.Linear(hidden_dim, dim, bias=False) |
|
|
self.ffn_dropout = nn.Dropout(dropout_p) |
|
|
|
|
|
def forward(self, x): |
|
|
h1, h2 = self.w1(x).chunk(2, dim=-1) |
|
|
return self.ffn_dropout(self.w2(F.silu(h1) * h2)) |
|
|
|
|
|
|
|
|
class TransformerBlock(nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
dim, |
|
|
n_head, |
|
|
attn_dropout_p: float = 0.0, |
|
|
resid_dropout_p: float = 0.0, |
|
|
drop_path: float = 0.0, |
|
|
causal: bool = True, |
|
|
): |
|
|
super().__init__() |
|
|
self.attention = Attention( |
|
|
dim=dim, |
|
|
n_head=n_head, |
|
|
attn_dropout_p=attn_dropout_p, |
|
|
resid_dropout_p=resid_dropout_p, |
|
|
causal=causal, |
|
|
) |
|
|
self.feed_forward = FeedForward( |
|
|
dim=dim, |
|
|
dropout_p=resid_dropout_p, |
|
|
) |
|
|
self.attention_norm = RMSNorm(dim, eps=1e-6) |
|
|
self.ffn_norm = RMSNorm(dim, eps=1e-6) |
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
x: torch.Tensor, |
|
|
freqs_cis: torch.Tensor, |
|
|
): |
|
|
h = x + self.drop_path(self.attention(self.attention_norm(x), freqs_cis)) |
|
|
out = h + self.drop_path(self.feed_forward(self.ffn_norm(h))) |
|
|
return out |
|
|
|
|
|
def forward_onestep( |
|
|
self, |
|
|
x: torch.Tensor, |
|
|
freqs_cis: torch.Tensor, |
|
|
start_pos: int, |
|
|
end_pos: int, |
|
|
): |
|
|
h = x + self.drop_path( |
|
|
self.attention(self.attention_norm(x), freqs_cis, start_pos, end_pos) |
|
|
) |
|
|
out = h + self.drop_path(self.feed_forward(self.ffn_norm(h))) |
|
|
return out |
|
|
|
|
|
|
|
|
def get_2d_pos(resolution, patch_size, num_scales=1): |
|
|
max_pos = resolution // patch_size |
|
|
coords_list = [] |
|
|
|
|
|
for i in range(num_scales): |
|
|
scale = 2 ** (num_scales - i - 1) |
|
|
P = max(resolution // scale // patch_size, 1) |
|
|
edge = float(max_pos) / P |
|
|
centers = (torch.arange(P, dtype=torch.float32) + 0.5) * edge |
|
|
grid_y, grid_x = torch.meshgrid(centers, centers, indexing="ij") |
|
|
coords = torch.stack([grid_x.reshape(-1), grid_y.reshape(-1)], dim=1) |
|
|
coords_list.append(coords) |
|
|
|
|
|
return torch.cat(coords_list, dim=0) |
|
|
|
|
|
|
|
|
def precompute_freqs_cis_2d( |
|
|
pos_2d, n_elem: int, base: float = 10000, cls_token_num=120 |
|
|
): |
|
|
|
|
|
half_dim = n_elem // 2 |
|
|
freqs = 1.0 / ( |
|
|
base ** (torch.arange(0, half_dim, 2)[: (half_dim // 2)].float() / half_dim) |
|
|
) |
|
|
t = pos_2d + 1.0 |
|
|
if cls_token_num > 0: |
|
|
t = torch.cat( |
|
|
[torch.zeros((cls_token_num, 2), device=freqs.device), t], |
|
|
dim=0, |
|
|
) |
|
|
freqs = torch.outer(t.flatten(), freqs).view(*t.shape[:-1], -1) |
|
|
return torch.stack([torch.cos(freqs), torch.sin(freqs)], dim=-1) |
|
|
|
|
|
|
|
|
def apply_rotary_emb(x: torch.Tensor, freqs_cis: torch.Tensor): |
|
|
|
|
|
|
|
|
xshaped = x.float().reshape( |
|
|
*x.shape[:-1], -1, 2 |
|
|
) |
|
|
freqs_cis = freqs_cis.view( |
|
|
1, xshaped.size(1), 1, xshaped.size(3), 2 |
|
|
) |
|
|
x_out2 = torch.stack( |
|
|
[ |
|
|
xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1], |
|
|
xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1], |
|
|
], |
|
|
dim=-1, |
|
|
) |
|
|
x_out2 = x_out2.flatten(3) |
|
|
return x_out2.type_as(x) |
|
|
|