File size: 10,365 Bytes
ccc9716 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from .sampling_parallel import euler_maruyama
def timestep_embedding(t, dim, max_period=10000, time_factor: float = 1000.0):
half = dim // 2
t = time_factor * t.float()
freqs = torch.exp(
-math.log(max_period)
* torch.arange(start=0, end=half, dtype=torch.float32, device=t.device)
/ half
)
args = t[:, None] * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
if torch.is_floating_point(t):
embedding = embedding.to(t)
return embedding
def time_shift_sana(t: torch.Tensor, flow_shift: float = 1., sigma: float = 1.):
return (1 / flow_shift) / ( (1 / flow_shift) + (1 / t - 1) ** sigma)
class DiffHead(nn.Module):
"""Diffusion Loss"""
def __init__(
self,
ch_target,
ch_cond,
ch_latent,
depth_latent,
depth_adanln,
grad_checkpointing=False,
time_shift=1.,
time_schedule='logit_normal',
parallel_num=4,
P_std: float = 1.,
P_mean: float = 0.,
):
super(DiffHead, self).__init__()
self.ch_target = ch_target
self.time_shift = time_shift
self.time_schedule = time_schedule
self.P_std = P_std
self.P_mean = P_mean
self.net = TransEncoder(
in_channels=ch_target,
model_channels=ch_latent,
z_channels=ch_cond,
num_res_blocks=depth_latent,
num_ada_ln_blocks=depth_adanln,
grad_checkpointing=grad_checkpointing,
parallel_num=parallel_num,
)
def forward(self, x, cond):
with torch.autocast(device_type="cuda", enabled=False):
with torch.no_grad():
if self.time_schedule == 'logit_normal':
t = (torch.randn((x.shape[0]), device=x.device) * self.P_std + self.P_mean).sigmoid()
if self.time_shift != 1.:
t = time_shift_sana(t, self.time_shift)
elif self.time_schedule == 'uniform':
t = torch.rand((x.shape[0]), device=x.device)
if self.time_shift != 1.:
t = time_shift_sana(t, self.time_shift)
else:
raise NotImplementedError(f"unknown time_schedule {self.time_schedule}")
e = torch.randn_like(x)
ti = t.view(-1, 1, 1)
z = (1.0 - ti) * e + ti * x
v = (x - z) / (1 - ti).clamp_min(0.05)
x_pred = self.net(z, t, cond)
v_pred = (x_pred - z) / (1 - ti).clamp_min(0.05)
with torch.autocast(device_type="cuda", enabled=False):
v_pred = v_pred.float()
loss = torch.mean((v - v_pred) ** 2)
return loss
def sample(
self,
z,
cfg,
num_sampling_steps,
):
return euler_maruyama(
self.ch_target,
self.net.forward,
z,
cfg,
num_sampling_steps=num_sampling_steps,
time_shift = self.time_shift,
)
def initialize_weights(self):
self.net.initialize_weights()
class TimestepEmbedder(nn.Module):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
def forward(self, t):
t_freq = timestep_embedding(t, self.frequency_embedding_size)
t_emb = self.mlp(t_freq)
return t_emb
class ResBlock(nn.Module):
def __init__(self, channels):
super().__init__()
self.channels = channels
self.norm = nn.LayerNorm(channels, eps=1e-6, elementwise_affine=True)
hidden_dim = int(channels * 1.5)
self.w1 = nn.Linear(channels, hidden_dim * 2, bias=True)
self.w2 = nn.Linear(hidden_dim, channels, bias=True)
def forward(self, x, scale, shift, gate):
h = self.norm(x) * (1 + scale) + shift
h1, h2 = self.w1(h).chunk(2, dim=-1)
h = self.w2(F.silu(h1) * h2)
return x + h * gate
class FinalLayer(nn.Module):
def __init__(self, channels, out_channels):
super().__init__()
self.norm_final = nn.LayerNorm(channels, eps=1e-6, elementwise_affine=False)
self.ada_ln_modulation = nn.Linear(channels, channels * 2, bias=True)
self.linear = nn.Linear(channels, out_channels, bias=True)
def forward(self, x, y):
scale, shift = self.ada_ln_modulation(y).chunk(2, dim=-1)
x = self.norm_final(x) * (1.0 + scale) + shift
x = self.linear(x)
return x
class Attention(nn.Module):
def __init__(
self,
dim,
n_head,
):
super().__init__()
assert dim % n_head == 0
self.dim = dim
self.head_dim = dim // n_head
self.scale = self.head_dim**-0.5
self.n_head = n_head
total_kv_dim = (self.n_head * 3) * self.head_dim
self.wqkv = nn.Linear(dim, total_kv_dim, bias=True)
self.wo = nn.Linear(dim, dim, bias=True)
def forward(
self,
x: torch.Tensor,
):
bsz, seqlen, _ = x.shape
xq, xk, xv = self.wqkv(x).chunk(3, dim=-1)
xq = xq.view(bsz, seqlen, self.n_head, self.head_dim)
xk = xk.view(bsz, seqlen, self.n_head, self.head_dim)
xv = xv.view(bsz, seqlen, self.n_head, self.head_dim)
xq, xk, xv = map(lambda x: x.transpose(1, 2), (xq, xk, xv))
xq = xq * self.scale
attn = xq @ xk.transpose(-1, -2)
attn = F.softmax(attn, dim=-1)
output = (attn @ xv).transpose(1, 2).contiguous()
# output = flash_attn_func(
# xq,
# xk,
# xv,
# causal=False,
# )
output = output.view(bsz, seqlen, self.dim)
output = self.wo(output)
return output
class TransBlock(nn.Module):
def __init__(self, channels):
super().__init__()
self.channels = channels
self.norm1 = nn.LayerNorm(channels, eps=1e-6, elementwise_affine=True)
self.attn = Attention(channels, n_head=channels//64)
self.norm2 = nn.LayerNorm(channels, eps=1e-6, elementwise_affine=True)
hidden_dim = int(channels * 1.5)
self.w1 = nn.Linear(channels, hidden_dim * 2, bias=True)
self.w2 = nn.Linear(hidden_dim, channels, bias=True)
def forward(self, x, scale1, shift1, gate1, scale2, shift2, gate2):
h = self.norm1(x) * (1 + scale1) + shift1
h = self.attn(h)
x = x + h * gate1
h = self.norm2(x) * (1 + scale2) + shift2
h1, h2 = self.w1(h).chunk(2, dim=-1)
h = self.w2(F.silu(h1) * h2)
return x + h * gate2
class TransEncoder(nn.Module):
def __init__(
self,
in_channels,
model_channels,
z_channels,
num_res_blocks,
num_ada_ln_blocks=2,
grad_checkpointing=False,
parallel_num=4,
):
super().__init__()
self.in_channels = in_channels
self.model_channels = model_channels
self.out_channels = in_channels
self.num_res_blocks = num_res_blocks
self.grad_checkpointing = grad_checkpointing
self.parallel_num = parallel_num
self.time_embed = TimestepEmbedder(model_channels)
self.cond_embed = nn.Linear(z_channels, model_channels)
self.input_proj = nn.Linear(in_channels, model_channels)
self.res_blocks = nn.ModuleList()
for i in range(num_res_blocks):
self.res_blocks.append(
TransBlock(
model_channels,
)
)
# share adaLN for consecutive blocks, to save computation and parameters
self.ada_ln_blocks = nn.ModuleList()
for i in range(num_ada_ln_blocks):
self.ada_ln_blocks.append(
nn.Linear(model_channels, model_channels * 6, bias=True)
)
self.ada_ln_switch_freq = max(1, num_res_blocks // num_ada_ln_blocks)
assert (
num_res_blocks % self.ada_ln_switch_freq
) == 0, "num_res_blocks must be divisible by num_ada_ln_blocks"
self.final_layer = FinalLayer(model_channels, self.out_channels)
self.initialize_weights()
def initialize_weights(self):
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
# Initialize timestep embedding MLP
nn.init.normal_(self.time_embed.mlp[0].weight, std=0.02)
nn.init.normal_(self.time_embed.mlp[2].weight, std=0.02)
for block in self.ada_ln_blocks:
nn.init.constant_(block.weight, 0)
nn.init.constant_(block.bias, 0)
# Zero-out output layers
nn.init.constant_(self.final_layer.ada_ln_modulation.weight, 0)
nn.init.constant_(self.final_layer.ada_ln_modulation.bias, 0)
nn.init.constant_(self.final_layer.linear.weight, 0)
nn.init.constant_(self.final_layer.linear.bias, 0)
@torch.compile()
def forward(self, x, t, c):
x = self.input_proj(x)
t = self.time_embed(t).unsqueeze(1)
c = self.cond_embed(c)
y = F.silu(t+c)
scale1, shift1, gate1, scale2, shift2, gate2 = self.ada_ln_blocks[0](y).chunk(6, dim=-1)
for i, block in enumerate(self.res_blocks):
if i > 0 and i % self.ada_ln_switch_freq == 0:
ada_ln_block = self.ada_ln_blocks[i // self.ada_ln_switch_freq]
scale1, shift1, gate1, scale2, shift2, gate2 = ada_ln_block(y).chunk(6, dim=-1)
x = block(x, scale1, shift1, gate1, scale2, shift2, gate2)
return self.final_layer(x, y) |