File size: 8,748 Bytes
da5649b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import math

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.checkpoint import checkpoint

from .sampling import euler_maruyama


def timestep_embedding(t, dim, max_period=10000, time_factor: float = 1000.0):
    half = dim // 2
    t = time_factor * t.float()
    freqs = torch.exp(
        -math.log(max_period)
        * torch.arange(start=0, end=half, dtype=torch.float32, device=t.device)
        / half
    )

    args = t[:, None] * freqs[None]
    embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
    if dim % 2:
        embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
    if torch.is_floating_point(t):
        embedding = embedding.to(t)
    return embedding

def time_shift_sana(t: torch.Tensor, flow_shift: float = 1., sigma: float = 1.):
    return (1 / flow_shift) / ( (1 / flow_shift) + (1 / t - 1) ** sigma)

class DiffHead(nn.Module):
    """Diffusion Loss"""

    def __init__(
        self,
        ch_target,
        ch_cond,
        ch_latent,
        depth_latent,
        depth_adanln,
        grad_checkpointing=False,
        time_shift=1.,
        time_schedule='logit_normal',
        P_std: float = 1.,
        P_mean: float = 0.,
    ):
        super(DiffHead, self).__init__()
        self.ch_target = ch_target
        self.time_shift = time_shift
        self.time_schedule = time_schedule
        self.P_std = P_std
        self.P_mean = P_mean

        self.net = MlpEncoder(
            in_channels=ch_target,
            model_channels=ch_latent,
            z_channels=ch_cond,
            num_res_blocks=depth_latent,
            num_ada_ln_blocks=depth_adanln,
            grad_checkpointing=grad_checkpointing,
        )

    def forward(self, x, cond):
        with torch.autocast(device_type="cuda", enabled=False):
            with torch.no_grad():
                if self.time_schedule == 'logit_normal':
                    t = (torch.randn((x.shape[0]), device=x.device) * self.P_std + self.P_mean).sigmoid()
                    if self.time_shift != 1.:
                        t = time_shift_sana(t, self.time_shift)
                elif self.time_schedule == 'uniform':
                    t = torch.rand((x.shape[0]), device=x.device)
                    if self.time_shift != 1.:
                        t = time_shift_sana(t, self.time_shift)
                else:
                    raise NotImplementedError(f"unknown time_schedule {self.time_schedule}")
                e = torch.randn_like(x)
                ti = t.view(-1, 1)
                z = (1.0 - ti) * e + ti * x
                v = (x - z) / (1 - ti).clamp_min(0.05)

        x_pred = self.net(z, t, cond)
        v_pred = (x_pred - z) / (1 - ti).clamp_min(0.05)

        with torch.autocast(device_type="cuda", enabled=False):
            v_pred = v_pred.float()
            loss = torch.mean((v - v_pred) ** 2)
        return loss

    def sample(
        self,
        z,
        cfg,
        num_sampling_steps,
    ):
        return euler_maruyama(
            self.ch_target,
            self.net.forward,
            z,
            cfg,
            num_sampling_steps=num_sampling_steps,
            time_shift = self.time_shift,
        )

    def initialize_weights(self):
        self.net.initialize_weights()


class TimestepEmbedder(nn.Module):
    """
    Embeds scalar timesteps into vector representations.
    """

    def __init__(self, hidden_size, frequency_embedding_size=256):
        super().__init__()
        self.mlp = nn.Sequential(
            nn.Linear(frequency_embedding_size, hidden_size, bias=True),
            nn.SiLU(),
            nn.Linear(hidden_size, hidden_size, bias=True),
        )
        self.frequency_embedding_size = frequency_embedding_size

    def forward(self, t):
        t_freq = timestep_embedding(t, self.frequency_embedding_size)
        t_emb = self.mlp(t_freq)
        return t_emb


class ResBlock(nn.Module):
    def __init__(self, channels):
        super().__init__()
        self.channels = channels
        self.norm = nn.LayerNorm(channels, eps=1e-6, elementwise_affine=True)
        hidden_dim = int(channels * 1.5)
        self.w1 = nn.Linear(channels, hidden_dim * 2, bias=True)
        self.w2 = nn.Linear(hidden_dim, channels, bias=True)

    def forward(self, x, scale, shift, gate):
        h = self.norm(x) * (1 + scale) + shift
        h1, h2 = self.w1(h).chunk(2, dim=-1)
        h = self.w2(F.silu(h1) * h2)
        return x + h * gate


class FinalLayer(nn.Module):
    def __init__(self, channels, out_channels):
        super().__init__()
        self.norm_final = nn.LayerNorm(channels, eps=1e-6, elementwise_affine=False)
        self.ada_ln_modulation = nn.Linear(channels, channels * 2, bias=True)
        self.linear = nn.Linear(channels, out_channels, bias=True)

    def forward(self, x, y):
        scale, shift = self.ada_ln_modulation(y).chunk(2, dim=-1)
        x = self.norm_final(x) * (1.0 + scale) + shift
        x = self.linear(x)
        return x


class MlpEncoder(nn.Module):

    def __init__(
        self,
        in_channels,
        model_channels,
        z_channels,
        num_res_blocks,
        num_ada_ln_blocks=2,
        grad_checkpointing=False,
    ):
        super().__init__()

        self.in_channels = in_channels
        self.model_channels = model_channels
        self.out_channels = in_channels
        self.num_res_blocks = num_res_blocks
        self.grad_checkpointing = grad_checkpointing

        self.time_embed = TimestepEmbedder(model_channels)
        self.cond_embed = nn.Linear(z_channels, model_channels)

        self.input_proj = nn.Linear(in_channels, model_channels)
        self.res_blocks = nn.ModuleList()
        for i in range(num_res_blocks):
            self.res_blocks.append(
                ResBlock(
                    model_channels,
                )
            )
        # share adaLN for consecutive blocks, to save computation and parameters
        self.ada_ln_blocks = nn.ModuleList()
        for i in range(num_ada_ln_blocks):
            self.ada_ln_blocks.append(
                nn.Linear(model_channels, model_channels * 3, bias=True)
            )
        self.ada_ln_switch_freq = max(1, num_res_blocks // num_ada_ln_blocks)
        assert (
            num_res_blocks % self.ada_ln_switch_freq
        ) == 0, "num_res_blocks must be divisible by num_ada_ln_blocks"
        self.final_layer = FinalLayer(model_channels, self.out_channels)

        self.initialize_weights()

    def initialize_weights(self):
        def _basic_init(module):
            if isinstance(module, nn.Linear):
                torch.nn.init.xavier_uniform_(module.weight)
                if module.bias is not None:
                    nn.init.constant_(module.bias, 0)

        self.apply(_basic_init)

        # Initialize timestep embedding MLP
        nn.init.normal_(self.time_embed.mlp[0].weight, std=0.02)
        nn.init.normal_(self.time_embed.mlp[2].weight, std=0.02)

        for block in self.ada_ln_blocks:
            nn.init.constant_(block.weight, 0)
            nn.init.constant_(block.bias, 0)

        # Zero-out output layers
        nn.init.constant_(self.final_layer.ada_ln_modulation.weight, 0)
        nn.init.constant_(self.final_layer.ada_ln_modulation.bias, 0)
        nn.init.constant_(self.final_layer.linear.weight, 0)
        nn.init.constant_(self.final_layer.linear.bias, 0)

    @torch.compile()
    def forward(self, x, t, c):
        """
        Apply the model to an input batch.
        :param x: an [N x C] Tensor of inputs.
        :param t: a 1-D batch of timesteps.
        :param c: conditioning from AR transformer.
        :return: an [N x C] Tensor of outputs.
        """
        x = self.input_proj(x)
        t = self.time_embed(t)
        c = self.cond_embed(c)

        y = F.silu(t + c)
        scale, shift, gate = self.ada_ln_blocks[0](y).chunk(3, dim=-1)
        if self.grad_checkpointing and self.training:
            for i, block in enumerate(self.res_blocks):
                if i > 0 and i % self.ada_ln_switch_freq == 0:
                    ada_ln_block = self.ada_ln_blocks[i // self.ada_ln_switch_freq]
                    scale, shift, gate = ada_ln_block(y).chunk(3, dim=-1)
                x = checkpoint(block, x, scale, shift, gate, use_reentrant=False)
        else:
            for i, block in enumerate(self.res_blocks):
                if i > 0 and i % self.ada_ln_switch_freq == 0:
                    ada_ln_block = self.ada_ln_blocks[i // self.ada_ln_switch_freq]
                    scale, shift, gate = ada_ln_block(y).chunk(3, dim=-1)
                x = block(x, scale, shift, gate)

        return self.final_layer(x, y)