File size: 7,502 Bytes
44a403d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import contextlib
import io
import math
import os
import pickle
import tarfile
from functools import lru_cache

import numpy as np
import torch
from PIL import Image
from torch.utils.data import Dataset
from torchvision.datasets import ImageFolder
import torchvision.datasets as datasets


@contextlib.contextmanager
def numpy_seed(seed, *addl_seeds):
    """Context manager which seeds the NumPy PRNG with the specified seed and
    restores the state afterward"""
    if seed is None:
        yield
        return

    def check_seed(s):
        assert type(s) == int or type(s) == np.int32 or type(s) == np.int64

    check_seed(seed)
    if len(addl_seeds) > 0:
        for s in addl_seeds:
            check_seed(s)
        seed = int(hash((seed, *addl_seeds)) % 1e8)
    state = np.random.get_state()
    np.random.seed(seed)
    try:
        yield
    finally:
        np.random.set_state(state)


def build_flat_index(outer_path: str, idx_path: str):
    if os.path.exists(idx_path):
        print(f"Index file {idx_path} already exists. Skipping index building.")
        return pickle.load(open(idx_path, "rb"))
    entries = []  # (offset, size, label)
    cats = set()
    idx = 0
    with tarfile.open(outer_path, "r:") as outer:
        for sub in outer.getmembers():
            if not sub.isfile() or not sub.name.endswith(".tar"):
                continue
            outer_off = sub.offset_data
            sub_fobj = outer.extractfile(sub)
            with tarfile.open(fileobj=sub_fobj, mode="r:") as inner:
                for m in inner.getmembers():
                    if not m.isfile():
                        continue
                    cat = m.name.split("_", 1)[0]
                    cats.add(cat)
                    abs_off = outer_off + m.offset_data
                    entries.append((abs_off, m.size, cat))
                    if idx % 1000 == 1:
                        print(idx, m.name, abs_off, m.size, cat)
                    idx += 1
    sorted_cats = sorted(cats)
    cat2idx = {c: i for i, c in enumerate(sorted_cats)}

    flat = [(off, size, cat2idx[c]) for off, size, c in entries]

    os.makedirs(os.path.dirname(idx_path), exist_ok=True)
    with open(idx_path, "wb") as f:
        pickle.dump(
            flat,
            f,
        )
    print(f"Built flat index with {len(flat)} images.")
    return flat


class ImageNetTarDataset(Dataset):
    """
    ImageNet dataset stored in a tar file, avoid to decompress the whole dataset.
    You can direct use the original downloaded tar file (ILSVRC2012_img_train.tar) from official ImageNet website.
    The best practice is to copy the tar file to node's local disk or ramdisk (like /dev/shm/) first, to avoid remote I/O bottleneck.
    """

    def __init__(
        self,
        tar_file,
    ):
        self.tar_file = tar_file
        self.tar_handle = None
        self.files = build_flat_index(tar_file, tar_file + ".index")
        self.num_examples = len(self.files)

    def __len__(self):
        return self.num_examples

    def get_raw_image(self, index):
        if self.tar_handle is None:
            self.tar_handle = open(self.tar_file, "rb")

        offset, size, label = self.files[index]
        self.tar_handle.seek(offset)
        data = self.tar_handle.read(size)
        image = Image.open(io.BytesIO(data)).convert("RGB")
        return image, label

    @lru_cache(maxsize=16)
    def __getitem__(self, idx):
        return self.get_raw_image(idx)


def center_crop_arr(pil_image, image_size):
    """
    Center cropping implementation from ADM.
    https://github.com/openai/guided-diffusion/blob/8fb3ad9197f16bbc40620447b2742e13458d2831/guided_diffusion/image_datasets.py#L126
    """
    while min(*pil_image.size) >= 2 * image_size:
        pil_image = pil_image.resize(
            tuple(x // 2 for x in pil_image.size), resample=Image.BOX
        )

    scale = image_size / min(*pil_image.size)
    pil_image = pil_image.resize(
        tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC
    )

    arr = np.array(pil_image)
    crop_y = (arr.shape[0] - image_size) // 2
    crop_x = (arr.shape[1] - image_size) // 2
    return Image.fromarray(
        arr[crop_y : crop_y + image_size, crop_x : crop_x + image_size]
    )


def numpy_randrange(start, end):
    return int(np.random.randint(start, end))


def random_crop_arr(pil_image, image_size, min_crop_frac=0.8, max_crop_frac=1.0):
    min_smaller_dim_size = math.ceil(image_size / max_crop_frac)
    max_smaller_dim_size = math.ceil(image_size / min_crop_frac)
    smaller_dim_size = numpy_randrange(min_smaller_dim_size, max_smaller_dim_size + 1)

    # We are not on a new enough PIL to support the `reducing_gap`
    # argument, which uses BOX downsampling at powers of two first.
    # Thus, we do it by hand to improve downsample quality.
    while min(*pil_image.size) >= 2 * smaller_dim_size:
        pil_image = pil_image.resize(
            tuple(x // 2 for x in pil_image.size), resample=Image.BOX
        )

    scale = smaller_dim_size / min(*pil_image.size)
    pil_image = pil_image.resize(
        tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC
    )

    arr = np.array(pil_image)
    crop_y = numpy_randrange(0, arr.shape[0] - image_size + 1)
    crop_x = numpy_randrange(0, arr.shape[1] - image_size + 1)
    return Image.fromarray(
        arr[crop_y : crop_y + image_size, crop_x : crop_x + image_size]
    )


def crop(pil_image, left, top, right, bottom):
    """
    Crop the image to the specified box.
    """
    return pil_image.crop((left, top, right, bottom))


class ImageCropDataset(Dataset):

    def __init__(
        self,
        raw_dataset,
        resolution,
        patch_size,
        seed=42,
    ):
        self.raw_dataset = raw_dataset
        self.resolution = resolution
        self.patch_size = patch_size
        self.aug_ratio = 1.0
        self.seed = seed
        self.epoch = None

    def set_epoch(self, epoch):
        self.epoch = epoch

    def set_aug_ratio(self, aug_ratio):
        self.aug_ratio = aug_ratio

    def __len__(self):
        return len(self.raw_dataset)

    def crop_and_flip(self, image):
        is_aug = np.random.rand() < self.aug_ratio
        if not is_aug:
            image = center_crop_arr(image, self.resolution)
        else:
            image = random_crop_arr(image, self.resolution)

        arr = np.asarray(image)

        is_flip = int(np.random.randint(0, 2))
        if is_flip == 1:
            # horizontal flip
            arr = arr[:, ::-1, :]

        return arr.transpose(2, 0, 1)  # HWC to CHW

    def __getitem__(self, idx):
        with numpy_seed(self.seed, self.epoch, idx):
            image, label = self.raw_dataset[idx]
            samples = self.crop_and_flip(image)
            # to [-1, 1]
            samples = (samples.astype(np.float32) / 255.0 - 0.5) * 2.0
            samples = torch.from_numpy(samples).float()
            return (
                samples,
                torch.tensor(label).long(),
            )


def build_dataset(args):
    # use tarred imagenet dataset if data_path ends with .tar
    raw_dataset = (
        ImageNetTarDataset(args.data_path)
        if args.data_path.endswith(".tar")
        else ImageFolder(args.data_path)
    )
    return ImageCropDataset(
        raw_dataset,
        args.image_size,
        args.patch_size,
        seed=args.global_seed if hasattr(args, "global_seed") else 42,
    )