injected_thinking / scripts /tools /prepare_swift_data.py
BechusRantus's picture
Upload folder using huggingface_hub
7134ce7 verified
import os
import json
import argparse
def process_data(input_file, output_file, image_dir, ratio=1.0):
"""
Process the input JSON file and generate a JSONL file with image paths and formatted content
Args:
input_file (str): Path to the input JSON file
output_file (str): Path to the output JSONL file
image_dir (str): Directory containing image files
"""
# Read the merged JSON file
with open(input_file, "r", encoding="utf-8") as f:
data = json.load(f)
chosen_idx = round(ratio * len(data))
chosen_data = data[:chosen_idx]
# Open output JSONL file for writing
with open(output_file, "w", encoding="utf-8") as f_out:
for item in chosen_data:
question = item['question']
# Extract filename from index and add .png extension
filename = item['idx'].rsplit('_', 1)[0] + '.png'
image_path = os.path.join(image_dir, filename)
if args.split_type == "train":
answer_content = item["answer"]
elif args.split_type == "val":
# Concatenate steps and final answer
answer_content = "**Step-by-Step Reasoning**:\n\n" + item["steps"].strip() + "\n\n**Final Answer**: " + item["final_answer"]
# Create JSONL entry with messages and image path
jsonl_entry = {
"messages": [
{"role": "user", "content": f"<image>{question}"},
{"role": "assistant", "content": f"{answer_content}"}
],
"images": [image_path]
}
# Write as JSON line
f_out.write(json.dumps(jsonl_entry, ensure_ascii=False) + "\n")
print(f"JSONL file has been written to {output_file}")
if __name__ == '__main__':
# Create argument parser
parser = argparse.ArgumentParser(description='Process JSON data and generate JSONL file')
# Add arguments
parser.add_argument('--input', type=str, default="/high_perf_store/mlinfra-vepfs/qiankangan/Drive-MLLM-main/data/DriveLMMo1/DriveLMMo1_TRAIN.json", help='Path to input JSON file')
parser.add_argument('--output', type=str, required=True, help='Path to output JSONL file')
parser.add_argument('--image_dir', type=str, required=True, help='Directory containing image files')
parser.add_argument('--split_type', type=str, required=True, default="train")
parser.add_argument('--ratio', type=float, default=1.0, help='decide the size of dataset')
# Parse command line arguments
args = parser.parse_args()
# Call processing function with parsed arguments
process_data(args.input, args.output, args.image_dir, args.ratio)