File size: 58,686 Bytes
7134ce7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 |
# Agent for functional calls
# Written by Jiageng Mao, Modified by Kangan Qian
from pathlib import Path
import pickle
import numpy as np
import math
import matplotlib.pyplot as plt
from PIL import Image
from scripts.tools.utils.geometry import CAR_LENGTH, CAR_WIDTH, GRID_SIZE, rotate_bbox
from skimage.draw import polygon
from scripts.tools.utils.box_distance import polygons_overlap, polygon_distance
from scripts.tools.utils.geometry import location_to_pixel_coordinate, pixel_coordinate_to_location, GRID_SIZE
from third_party.yoloworld_demo import get_2dbox_open_vocabulary_detector
from third_party.depth_demo import get_3d_location
class FuncAgent:
def __init__(self, data_dict=None, json_data_dict=None) -> None:
self.data = data_dict
# add json data dict to load image meta data
self.json_data_dict = json_data_dict
self.short_trajectory_description = False
self.visual_func_infos = [
get_open_world_vocabulary_detection_info,
get_3d_loc_in_cam_info,
resize_image_info,
crop_image_info,
]
self.detection_func_infos = [
get_leading_object_detection_info,
# get_object_detections_in_range_info,
get_surrounding_object_detections_info,
# get_front_object_detections_info,
get_all_object_detections_info,
]
self.prediction_func_infos = [
get_leading_object_future_trajectory_info,
get_future_trajectories_for_specific_objects_info,
# get_future_trajectories_in_range_info,
# get_future_waypoint_of_specific_objects_at_timestep_info,
get_all_future_trajectories_info,
]
self.occupancy_func_infos = [
get_occupancy_at_locations_for_timestep_info,
# check_occupancy_for_planned_trajectory_info,
]
self.map_func_infos = [
get_drivable_at_locations_info,
# check_drivable_of_planned_trajectory_info,
get_lane_category_at_locations_info,
get_distance_to_shoulder_at_locations_info,
get_current_shoulder_info,
get_distance_to_lane_divider_at_locations_info,
get_current_lane_divider_info,
get_nearest_pedestrian_crossing_info,
]
"""Basic visual information"""
def get_open_world_vocabulary_detection(self, object_names:list, cam_type:str):
"""
"idx": "e7ef871f77f44331aefdebc24ec034b7_b10f0cd792b64d16a1a5e8349b20504c_3",
"image": [
"samples/CAM_FRONT_LEFT/n015-2018-08-02-17-16-37+0800__CAM_FRONT_LEFT__1533201471404844.jpg",
"samples/CAM_FRONT/n015-2018-08-02-17-16-37+0800__CAM_FRONT__1533201471412477.jpg",
"samples/CAM_FRONT_RIGHT/n015-2018-08-02-17-16-37+0800__CAM_FRONT_RIGHT__1533201471420339.jpg",
"samples/CAM_BACK_RIGHT/n015-2018-08-02-17-16-37+0800__CAM_BACK_RIGHT__1533201471427893.jpg",
"samples/CAM_BACK/n015-2018-08-02-17-16-37+0800__CAM_BACK__1533201471437636.jpg",
"samples/CAM_BACK_LEFT/n015-2018-08-02-17-16-37+0800__CAM_BACK_LEFT__1533201471447423.jpg"
"""
cam_path_info_list = self.json_data_dict['image']
for cam_path_info in cam_path_info_list:
if cam_type == cam_path_info.split('/')[1]:
cur_cam_type_index = cam_path_info_list.index(cam_path_info)
choosed_image_path = cam_path_info_list[cur_cam_type_index]
prompts, detected_2d_boxs = get_2dbox_open_vocabulary_detector(text=object_names, image_path=choosed_image_path)
return prompts, detected_2d_boxs
"""Detection functions"""
def get_leading_object_detection(self):
return get_leading_object_detection(self.data)
def get_surrounding_object_detections(self):
return get_surrounding_object_detections(self.data)
def get_front_object_detections(self):
return get_front_object_detections(self.data)
def get_object_detections_in_range(self, x_start, x_end, y_start, y_end):
return get_object_detections_in_range(x_start, x_end, y_start, y_end, self.data)
def get_all_object_detections(self):
return get_all_object_detections(self.data)
"""Prediction functions"""
def get_leading_object_future_trajectory(self):
return get_leading_object_future_trajectory(self.data, short=self.short_trajectory_description)
def get_future_trajectories_for_specific_objects(self, object_ids):
return get_future_trajectories_for_specific_objects(object_ids, self.data, short=self.short_trajectory_description)
def get_future_trajectories_in_range(self, x_start, x_end, y_start, y_end):
return get_future_trajectories_in_range(x_start, x_end, y_start, y_end, self.data, short=self.short_trajectory_description)
def get_future_waypoint_of_specific_objects_at_timestep(self, object_ids, timestep):
return get_future_waypoint_of_specific_objects_at_timestep(object_ids, timestep, self.data)
def get_all_future_trajectories(self):
return get_all_future_trajectories(self.data, short=self.short_trajectory_description)
"""Occupancy functions"""
def get_occupancy_at_locations_for_timestep(self, locations, timestep):
return get_occupancy_at_locations_for_timestep(locations, timestep, self.data)
def check_occupancy_for_planned_trajectory(self, trajectory):
return check_occupancy_for_planned_trajectory(trajectory, self.data)
"""Map functions"""
def get_drivable_at_locations(self, locations):
return get_drivable_at_locations(locations, self.data)
def check_drivable_of_planned_trajectory(self, trajectory):
return check_drivable_of_planned_trajectory(trajectory, self.data)
def get_lane_category_at_locations(self, locations, return_score=True):
return get_lane_category_at_locations(locations, self.data, return_score=return_score)
def get_distance_to_shoulder_at_locations(self, locations):
return get_distance_to_shoulder_at_locations(locations, self.data)
def get_current_shoulder(self):
return get_current_shoulder(self.data)
def get_distance_to_lane_divider_at_locations(self, locations):
return get_distance_to_lane_divider_at_locations(locations, self.data)
def get_current_lane_divider(self):
return get_current_lane_divider(self.data)
def get_nearest_pedestrian_crossing(self):
return get_nearest_pedestrian_crossing(self.data)
"""Ego-state functions"""
def get_ego_states(self):
return get_ego_prompts(self.data)
# visual functions
resize_image_info = {
"name": "resize_image",
"description": "Resizes an image to specified dimensions with interpolation support",
"parameters": {
"type": "object",
"properties": {
"input_path": {"type": "string", "description": "Input image file path"},
"output_path": {"type": "string", "description": "Output path for resized image"},
"target_size": {
"type": "array",
"items": {"type": "integer"},
"minItems": 2,
"maxItems": 2,
"description": "Target dimensions [width, height]"
},
"interpolation": {
"type": "integer",
"description": "Interpolation method (e.g., Image.BILINEAR for bilinear interpolation)"
}
},
"required": ["input_path", "output_path", "target_size"]
}
}
def resize_image(input_path, output_path, target_size, interpolation=Image.BILINEAR):
"""
调整图像尺寸
:param input_path: 输入文件路径
:param output_path: 输出文件路径
:param target_size: 目标尺寸 (width, height)
:param interpolation: 插值方法(默认双线性插值)
"""
with Image.open(input_path) as img:
resized_img = img.resize(target_size, interpolation)
resized_img.save(output_path)
crop_image_info = {
"name": "crop_image",
"description": "Crops a rectangular region from an image",
"parameters": {
"type": "object",
"properties": {
"input_path": {"type": "string", "description": "Input image file path"},
"output_path": {"type": "string", "description": "Output path for cropped image"},
"box": {
"type": "array",
"items": {"type": "integer"},
"minItems": 4,
"maxItems": 4,
"description": "Crop region coordinates [left, upper, right, lower]"
}
},
"required": ["input_path", "output_path", "box"]
}
}
def crop_image(input_path, output_path, box):
"""
裁剪图像区域
:param input_path: 输入文件路径
:param output_path: 输出文件路径
:param box: 裁剪区域 (left, upper, right, lower)
"""
with Image.open(input_path) as img:
cropped_img = img.crop(box)
cropped_img.save(output_path)
rotate_image_info = {
"name": "rotate_image",
"description": "Rotates an image by specified degrees with canvas expansion support",
"parameters": {
"type": "object",
"properties": {
"input_path": {"type": "string", "description": "Input image file path"},
"output_path": {"type": "string", "description": "Output path for rotated image"},
"degrees": {"type": "number", "description": "Rotation angle in degrees (clockwise)"},
"expand": {
"type": "boolean",
"description": "Whether to expand canvas to fit rotation (default: False)"
},
"fill_color": {
"type": "array",
"items": {"type": "integer"},
"minItems": 3,
"maxItems": 3,
"description": "RGB fill color for expanded areas (default: [255,255,255])"
}
},
"required": ["input_path", "output_path", "degrees"]
}
}
def rotate_image(input_path, output_path, degrees, expand=False, fill_color=(255,255,255)):
"""
旋转图像
:param input_path: 输入文件路径
:param output_path: 输出文件路径
:param degrees: 旋转角度
:param expand: 是否扩展画布
:param fill_color: 扩展区域的填充颜色
"""
with Image.open(input_path) as img:
rotated_img = img.rotate(degrees, expand=expand, fillcolor=fill_color)
rotated_img.save(output_path)
adjust_brightness_info = {
"name": "adjust_brightness",
"description": "Adjusts image brightness using enhancement factor",
"parameters": {
"type": "object",
"properties": {
"input_path": {"type": "string", "description": "Input image file path"},
"output_path": {"type": "string", "description": "Output path for adjusted image"},
"factor": {
"type": "number",
"description": "Brightness multiplier (1.0=original, >1.0=brighter, <1.0=darker)"
}
},
"required": ["input_path", "output_path", "factor"]
}
}
def adjust_brightness(input_path, output_path, factor):
"""
调整图像亮度
:param input_path: 输入文件路径
:param output_path: 输出文件路径
:param factor: 亮度系数1.0为原始,>1.0更亮,<1.0更暗
"""
with Image.open(input_path) as img:
enhancer = ImageEnhance.Brightness(img)
bright_img = enhancer.enhance(factor)
bright_img.save(output_path)
get_open_world_vocabulary_detection_info ={
"name": "get_open_world_vocabulary_detection",
"description": "Given a list of words of object(e.g.['car', 'bike', 'traffic light']), get the detection of the object, the function will return its 2d position and size within the camera coordinate system. If there is no text-related object, return None",
"parameters": {
"type": "object",
"properties": {
"text": {
"type": "list",
"description": "a list contains the words to detect",
},
"image_path": {
"type": "str",
"description": "the image path related to the image."
}
},
"required": ["text", "image_path"],
},
}
get_3d_loc_in_cam_info ={
"name": "get_3d_loc_in_cam",
"description": "Given an input image and a set of object-related keywords(specified by a List of object words, e.g.['pedestrian in red T-shirt', 'black SUV']), this function calculates the depth value for each pixel in the image. It then determines and returns the 3D location of the specified objects within the camera coordinate system.",
"parameters": {
"type": "object",
"properties": {
"text": {
"type": "list",
"description": "a list contains the words to detect",
},
"image_path": {
"type": "str",
"description": "the image path related to the image."
}
},
"required": ["text", "image_path"],
},
}
# Detection functions
get_leading_object_detection_info ={
"name": "get_leading_object_detection",
"description": "Get the detection of the leading object, the function will return the leading object id and its position and size. If there is no leading object, return None",
"parameters": {
"type": "object",
"properties": {
},
"required": [],
},
}
def get_leading_object_detection(data_dict):
objects = data_dict["objects"]
prompts = "Leading object detections:\n"
detected_objs = []
for obj in objects:
# search for the leading object (at the same lane and in front of the ego vehicle in 10m)
obj_x, obj_y = obj["bbox"][:2]
if abs(obj_x) < 3.0 and obj_y >= 0.0 and obj_y < 10.0:
prompts += f"Leading object detected, object type: {obj['name']}, object id: {obj['id']}, position: ({obj_x:.2f}, {obj_y:.2f}), size: ({obj['bbox'][3]:.2f}, {obj['bbox'][4]:.2f})\n"
detected_objs.append(obj)
if len(detected_objs) == 0:
prompts = None
return prompts, detected_objs
get_surrounding_object_detections_info = {
"name": "get_surrounding_object_detections",
"description": "Get the detections of the surrounding objects in a 20m*20m range, the function will return a list of surroundind object ids and their positions and sizes. If there is no surrounding object, return None",
"parameters": {
"type": "object",
"properties": {},
"required": [],
},
}
def get_surrounding_object_detections(data_dict):
objects = data_dict["objects"]
prompts = "Surrounding object detections:\n"
detected_objs = []
for obj in objects:
# search for the surrounding objects (20m*20m range)
obj_x, obj_y = obj["bbox"][:2]
if abs(obj_x) < 20.0 and abs(obj_y) < 20.0:
prompts += f"Surrounding object detected, object type: {obj['name']}, object id: {obj['id']}, position: ({obj_x:.2f}, {obj_y:.2f}), size: ({obj['bbox'][3]:.2f}, {obj['bbox'][4]:.2f})\n"
detected_objs.append(obj)
if len(detected_objs) == 0:
prompts = None
# breakpoint()
return prompts, detected_objs
get_front_object_detections_info = {
"name": "get_front_object_detections",
"description": "Get the detections of the objects in front of you in a 10m*20m range, the function will return a list of front object ids and their positions and sizes. If there is no front object, return None",
"parameters": {
"type": "object",
"properties": {},
"required": [],
},
}
def get_front_object_detections(data_dict):
objects = data_dict["objects"]
prompts = "Front object detections:\n"
detected_objs = []
for obj in objects:
# search for the front objects (10m*20m range)
obj_x, obj_y = obj["bbox"][:2]
if abs(obj_x) < 5.0 and obj_y >= 0.0 and obj_y < 20.0:
prompts += f"Front object detected, object type: {obj['name']}, object id: {obj['id']}, position: ({obj_x:.2f}, {obj_y:.2f}), size: ({obj['bbox'][3]:.2f}, {obj['bbox'][4]:.2f})\n"
detected_objs.append(obj)
if len(detected_objs) == 0:
prompts = None
return prompts, detected_objs
get_object_detections_in_range_info = {
"name": "get_object_detections_in_range",
"description": "Get the detections of the objects in a given range (x_start, x_end)*(y_start, y_end)m^2, the function will return a list of object ids and their positions and sizes. If there is no object, return None",
"parameters": {
"type": "object",
"properties": {
"x_start": {
"type": "number",
"minimum": -50,
"maximum": 50,
"multipleOf" : 0.01,
"description": "start range of x axis",
},
"x_end": {
"type": "number",
"minimum": -50,
"maximum": 50,
"multipleOf" : 0.01,
"description": "end range of x axis",
},
"y_start": {
"type": "number",
"minimum": -50,
"maximum": 50,
"multipleOf" : 0.01,
"description": "start range of y axis",
},
"y_end": {
"type": "number",
"minimum": -50,
"maximum": 50,
"multipleOf" : 0.01,
"description": "end range of y axis",
},
},
"required": ["x_start", "x_end", "y_start", "y_end"],
},
}
def get_object_detections_in_range(x_start, x_end, y_start, y_end, data_dict):
x_start, x_end, y_start, y_end = float(x_start), float(x_end), float(y_start), float(y_end)
objects = data_dict["objects"]
prompts = f"Object detections in X range {x_start:.2f}-{x_end:.2f} and Y range {y_start:.2f}-{y_end:.2f}:\n"
detected_objs = []
for obj in objects:
# search for the objects in range
obj_x, obj_y = obj["bbox"][:2]
if obj_x >= x_start and obj_x <= x_end and obj_y >= y_start and obj_y <= y_end:
prompts += f"Object detected, object type: {obj['name']}, object id: {obj['id']}, position: ({obj_x:.2f}, {obj_y:.2f}), size: ({obj['bbox'][3]:.2f}, {obj['bbox'][4]:.2f})\n"
detected_objs.append(obj)
if len(detected_objs) == 0:
prompts = None
return prompts, detected_objs
get_all_object_detections_info ={
"name": "get_all_object_detections",
"description": "Get the detections of all objects in the whole scene, the function will return a list of object ids and their positions and sizes. Always avoid using this function if there are other choices.",
"parameters": {
"type": "object",
"properties": {},
"required": [],
},
}
def get_all_object_detections(data_dict):
objects = data_dict["objects"]
prompts = f"Full object detections:\n"
detected_objs = []
for obj in objects:
obj_x, obj_y = obj["bbox"][:2]
prompts += f"Object detected, object type: {obj['name']}, object id: {obj['id']}, position: ({obj_x:.2f}, {obj_y:.2f}), size: ({obj['bbox'][3]:.2f}, {obj['bbox'][4]:.2f})\n"
detected_objs.append(obj)
if len(detected_objs) == 0:
prompts = None
return prompts, detected_objs
def check_rotate_object_collision_for_planned_trajectory(trajectory, data_dict, safe_margin=1.):
objects = data_dict["objects"]
if debug:
plt.figure()
agents_final_corners = []
for obj in objects:
x, y, z, dx, dy, dz, rotation_z, rotation_y, rotation_x = obj["bbox"]
cx, cy = x, y
rotated_corners = rotate_bbox(0, 0, dx, dy, rotation_z)
# Get the box corners
if debug:
plt.scatter(x+dx/2, y+dy/2, c='b', s=50)
plt.scatter(x+dx/2, y-dy/2, c='b', s=50)
plt.scatter(x-dx/2, y-dy/2, c='b', s=50)
plt.scatter(x-dx/2, y+dy/2, c='b', s=50)
plt.show()
final_corners_0 = [(cx + x_prime, cy + y_prime) for x_prime, y_prime in rotated_corners]
for pt in final_corners_0:
plt.scatter(pt[0], pt[1], c='g', s=50)
for pt in obj["traj"]: ## NOTE: traj consists of the center of the bbox
plt.scatter(pt[0], pt[1], c='r', s=100)
agent_final_corners = []
for pt in obj["traj"][:6]:
cx, cy = pt[0], pt[1]
agent_final_corners.append([(cx + x_prime, cy + y_prime) for x_prime, y_prime in rotated_corners]) # only save future 6 timesteps
if debug:
for pt in agent_final_corners[-1]:
plt.scatter(pt[0], pt[1], c='g', s=50)
agents_final_corners.append(agent_final_corners)
ego_final_corners = []
for pt in trajectory:
ego_cx, ego_cy = pt[0], pt[1]
ego_rotated_corners = rotate_bbox(ego_cx, ego_cy, CAR_WIDTH, CAR_LENGTH, 0) # NOTE ego vehicle is always facing front in evaluation, we can consider to rotate it in practice
ego_final_corners.append(ego_rotated_corners) # only save future 6 timesteps
if debug:
for pt in ego_final_corners[-1]:
plt.scatter(pt[0], pt[1], c='r', s=50)
collision = np.full(len(trajectory), False)
for ts in range(len(trajectory)):
for obj in agents_final_corners:
if polygons_overlap(ego_final_corners[ts], obj[ts]):
collision[ts] = True
if debug:
print("Collision detected")
plt.figure()
plt.scatter(ego_final_corners[ts][:, 0], ego_final_corners[ts][:, 1], c='b', s=50)
plt.scatter(np.array(obj[ts])[:,0], np.array(obj[ts])[:,1], c='y', s=50)
elif polygon_distance(ego_final_corners[ts], obj[ts]) < safe_margin:
collision[ts] = True
if debug:
print("Collision detected")
plt.figure()
plt.scatter(ego_final_corners[ts][:, 0], ego_final_corners[ts][:, 1], c='b', s=50)
plt.scatter(np.array(obj[ts])[:,0], np.array(obj[ts])[:,1], c='y', s=50)
return collision
"""LANE"""
LANE_CATEGORYS = ['divider', 'ped_crossing', 'boundary']
get_drivable_at_locations_info = {
"name": "get_drivable_at_locations",
"description": "Get the drivability at the locations [(x_1, y_1), ..., (x_n, y_n)]. If the location is out of the map scope, return None",
"parameters": {
"type": "object",
"properties": {
"locations": {
"type": "array",
"items": {
"type": "array",
"items": {
"type": "number"
},
"minItems": 2,
"maxItems": 2
},
"description": "the locations [(x_1, y_1), ..., (x_n, y_n)] to be queried"
},
},
"required": ["locations"]
}
}
def get_drivable_at_locations(locations, data_dict):
drivable_map = data_dict["map"]["drivable"].T
prompts = "Drivability of selected locations:\n"
drivable = []
for x, y in locations:
X, Y, valid = location_to_pixel_coordinate(x, y)
if not valid:
drivable.append(True)
continue
else:
if drivable_map[X, Y]:
prompts += f"Location ({x:.2f}, {y:.2f}) is drivable\n"
else:
prompts += f"Location ({x:.2f}, {y:.2f}) is not drivable\n"
drivable.append(drivable_map[X, Y])
return prompts, drivable
check_drivable_of_planned_trajectory_info = {
"name": "check_drivable_of_planned_trajectory",
"description": "Check the drivability at the planned trajectory",
"parameters": {
"type": "object",
"properties": {
"trajectory": {
"type": "array",
"items": {
"type": "array",
"items": {
"type": "number"
},
"minItems": 2,
"maxItems": 2
},
"minItems": 6,
"maxItems": 7,
"description": "the planned trajectory [(x_1, y_1), ..., (x_n, y_n)] to be queried",
},
},
"required": ["trajectory"],
},
}
def check_drivable_of_planned_trajectory(trajectory, data_dict):
drivable_map = data_dict["map"]["drivable"].T
prompts = "Drivability of the planned trajectory:\n"
drivable = []
all_drivable = True
for timestep, waypoint in enumerate(trajectory):
x, y = waypoint
T = timestep + 1 # assume time step starting from 1
X, Y, valid = location_to_pixel_coordinate(x, y)
if not valid:
drivable.append(True)
else:
if not drivable_map[X, Y]:
prompts += f"Waypoint ({x:.2f}, {y:.2f}) is not drivable at time step {T}\n"
all_drivable = False
drivable.append(drivable_map[X, Y])
if all_drivable:
prompts += f"All waypoints of the planned trajectory are in drivable regions\n"
return prompts, drivable
def check_drivable_of_planned_trajectory_and_surrounding(trajectory, data_dict):
drivable_map = data_dict["map"]["drivable"].T
prompts = "Drivability of the planned trajectory:\n"
drivable = []
all_drivable = True
for timestep, waypoint in enumerate(trajectory):
x, y = waypoint
T = timestep + 1 # assume time step starting from 1
X, Y, valid = location_to_pixel_coordinate(x, y)
if not valid:
drivable.append(True)
else:
if not drivable_map[X, Y]:
prompts += f"Waypoint ({x:.2f}, {y:.2f}) is not drivable at time step {T}\n"
# check surrounding
surrounding = drivable_map[X-1:X+2, Y-1:Y+2]
if True in surrounding:
index_x, index_y = np.where(surrounding)
index_X, index_Y = index_x + X - 1, index_y + Y - 1
prompts += f"- Surrounding drivable regions: {[(pixel_coordinate_to_location(x, y)[:-1]) for x, y in zip(index_X, index_Y)]}\n"
all_drivable = False
drivable.append(drivable_map[X, Y])
if all_drivable:
prompts += f"All waypoints of the planned trajectory are in drivable regions\n"
return prompts, drivable
get_lane_category_at_locations_info = {
"name": "get_lane_category_at_locations",
"description": "Get the lane category at the locations [(x_1, y_1), ..., (x_n, y_n)]. If the location is out of the map scope, return None",
"parameters": {
"type": "object",
"properties": {
"locations": {
"type": "array",
"items": {
"type": "array",
"items": {
"type": "number"
},
"minItems": 2,
"maxItems": 2
},
"description": "the locations [(x_1, y_1), ..., (x_n, y_n)] to be queried",
},
"return_score": {
"type": "boolean",
"description": "whether to return the probability score of the lane category",
},
},
"required": ["locations", "return_score"],
},
}
def get_lane_category_at_locations(locations, data_dict, return_score=True):
lane_map = data_dict["map"]["lane"].transpose(0, 2, 1)
lane_score_map = data_dict["map"]["lane_probs"].transpose(0, 2, 1)
prompts = "Lane category of selected locations:\n"
lane_category = []
for x, y in locations:
X, Y, valid = location_to_pixel_coordinate(x, y)
if not valid:
lane_category.append(None)
continue
else:
lane_category.append(lane_map[:, X, Y])
cat_index = np.where(lane_map[:, X, Y])[0]
if len(cat_index) == 0:
prompts += f"Location ({x:.2f}, {y:.2f}) has no lane category\n"
else:
cat_prompt = ', '.join(LANE_CATEGORYS[i] for i in cat_index)
score_prompt = ', '.join(f"{lane_score_map[i, X, Y]:.2f}" for i in cat_index)
if return_score:
prompts += f"Location ({x:.2f}, {y:.2f}) has lane category {cat_prompt} with probability score {score_prompt}\n"
else:
prompts += f"Location ({x:.2f}, {y:.2f}) has lane category {cat_prompt}\n"
return prompts, lane_category
get_distance_to_shoulder_at_locations_info = {
"name": "get_distance_to_shoulder_at_locations",
"description": "Get the distance to both sides of road shoulders at the locations [(x_1, y_1), ..., (x_n, y_n)]. If the location is out of the map scope, return None",
"parameters": {
"type": "object",
"properties": {
"locations": {
"type": "array",
"items": {
"type": "array",
"items": {
"type": "number"
},
"minItems": 2,
"maxItems": 2
},
"description": "the locations [(x_1, y_1), ..., (x_n, y_n)] to be queried",
},
},
"required": ["locations"],
},
}
def get_distance_to_shoulder_at_locations(locations, data_dict):
boundary_map = data_dict["map"]["lane"][2].T
prompts = "Distance to both sides of road shoulders of selected locations:\n"
distance_to_shoulder = []
# breakpoint()
for x, y in locations:
X, Y, valid = location_to_pixel_coordinate(x, y)
if not valid:
distance_to_shoulder.append(None)
continue
else:
Y_max = Y+5 if Y+5 < boundary_map.shape[1] else boundary_map.shape[1] - 1
Y_min = Y-5 if Y-5 >= 0 else 0
# find left nearest boundary
ind_x = np.where(boundary_map[:X, Y_min:Y_max])[0]
if len(ind_x) == 0:
left_shoulder = None
else:
left_shoulder = (X - np.max(ind_x)) * GRID_SIZE
# find right nearest boundary
ind_x = np.where(boundary_map[X:, Y_min : Y_max])[0] + X
if len(ind_x) == 0:
right_shoulder = None
else:
right_shoulder = (np.min(ind_x) - X) * GRID_SIZE
distance_to_shoulder.append((left_shoulder, right_shoulder))
if left_shoulder is not None and right_shoulder is not None:
prompts += f"Location ({x:.2f}, {y:.2f}) distance to left shoulder is {left_shoulder}m and right shoulder is {right_shoulder}m\n"
elif left_shoulder is None and right_shoulder is None:
prompts += f"Location ({x:.2f}, {y:.2f}) distance to shoulders are uncertain\n"
elif left_shoulder is None and right_shoulder is not None:
prompts += f"Location ({x:.2f}, {y:.2f}) distance to left shoulder is uncertain and distance to right shoulder is {right_shoulder}m\n"
elif left_shoulder is not None and right_shoulder is None:
prompts += f"Location ({x:.2f}, {y:.2f}) distance to left shoulder is {left_shoulder}m and distance to right shoulder is uncertain\n"
else:
raise Exception("Should not reach here")
return prompts, distance_to_shoulder
get_current_shoulder_info = {
"name": "get_current_shoulder",
"description": "Get the distance to both sides of road shoulders for the current ego-vehicle location.",
"parameters": {
"type": "object",
"properties": {},
"required": [],
},
}
def get_current_shoulder(data_dict):
boundary_map = data_dict["map"]["lane"][2].T
prompts = "Distance to both sides of road shoulders of current ego-vehicle location:\n"
distance_to_shoulder = []
x, y = 0.0, 0.0
X, Y, valid = location_to_pixel_coordinate(x, y)
if not valid:
distance_to_shoulder.append(None)
prompts = None
else:
Y_max = Y+5 if Y+5 < boundary_map.shape[1] else boundary_map.shape[1] - 1
Y_min = Y-5 if Y-5 >= 0 else 0
# find left nearest boundary
ind_x = np.where(boundary_map[:X, Y_min:Y_max])[0]
if len(ind_x) == 0:
left_shoulder = None
else:
left_shoulder = (X - np.max(ind_x)) * GRID_SIZE
# find right nearest boundary
ind_x = np.where(boundary_map[X:, Y_min : Y_max])[0] + X
if len(ind_x) == 0:
right_shoulder = None
else:
right_shoulder = (np.min(ind_x) - X) * GRID_SIZE
distance_to_shoulder.append((left_shoulder, right_shoulder))
if left_shoulder is not None and right_shoulder is not None:
prompts += f"Current ego-vehicle's distance to left shoulder is {left_shoulder}m and right shoulder is {right_shoulder}m\n"
elif left_shoulder is None and right_shoulder is None:
prompts += f"Current ego-vehicle's distance to shoulders are uncertain\n"
elif left_shoulder is None and right_shoulder is not None:
prompts += f"Current ego-vehicle's distance to left shoulder is uncertain and distance to right shoulder is {right_shoulder}m\n"
elif left_shoulder is not None and right_shoulder is None:
prompts += f"Current ego-vehicle's distance to left shoulder is {left_shoulder}m and distance to right shoulder is uncertain\n"
else:
raise Exception("Should not reach here")
return prompts, distance_to_shoulder
# TODO(Jiageng): add this function
# get_current_center_line_info = {
# "name": "get_current_center_line",
# "description": "Get the current center line that the ego-vehicle is driving on. If there is no such lane, return None",
# "parameters": {
# },
# }
get_distance_to_lane_divider_at_locations_info = {
"name": "get_distance_to_lane_divider_at_locations",
"description": "Get the distance to both sides of road lane_dividers at the locations [(x_1, y_1), ..., (x_n, y_n)]. If the location is out of the map scope, return None",
"parameters": {
"type": "object",
"properties": {
"locations": {
"type": "array",
"items": {
"type": "array",
"items": {
"type": "number"
},
"minItems": 2,
"maxItems": 2
},
"description": "the locations [(x_1, y_1), ..., (x_n, y_n)] to be queried",
},
},
"required": ["locations"],
},
}
def get_distance_to_lane_divider_at_locations(locations, data_dict):
boundary_map = data_dict["map"]["lane"][0].T
prompts = "Get distance to both sides of road lane_dividers of selected locations:\n"
distance_to_lane_divider = []
for x, y in locations:
X, Y, valid = location_to_pixel_coordinate(x, y)
if not valid:
distance_to_lane_divider.append(None)
continue
else:
Y_max = Y+5 if Y+5 < boundary_map.shape[1] else boundary_map.shape[1] - 1
Y_min = Y-5 if Y-5 >= 0 else 0
# find left nearest lane divider
ind_x = np.where(boundary_map[:X, Y_min:Y_max])[0]
if len(ind_x) == 0:
left_lane_divider = None
else:
left_lane_divider = (X - np.max(ind_x)) * GRID_SIZE
# find right nearest lane divider
ind_x = np.where(boundary_map[X:, Y_min : Y_max])[0] + X
if len(ind_x) == 0:
right_lane_divider = None
else:
right_lane_divider = (np.min(ind_x) - X) * GRID_SIZE
distance_to_lane_divider.append((left_lane_divider, right_lane_divider))
if left_lane_divider is not None and right_lane_divider is not None:
prompts += f"Location ({x:.2f}, {y:.2f}) distance to left lane_divider is {left_lane_divider}m and right lane_divider is {right_lane_divider}m\n"
elif left_lane_divider is None and right_lane_divider is None:
prompts += f"Location ({x:.2f}, {y:.2f}) distance to lane_dividers are uncertain\n"
elif left_lane_divider is None and right_lane_divider is not None:
prompts += f"Location ({x:.2f}, {y:.2f}) distance to left lane_divider is uncertain and distance to right lane_divider is {right_lane_divider}m\n"
elif left_lane_divider is not None and right_lane_divider is None:
prompts += f"Location ({x:.2f}, {y:.2f}) distance to left lane_divider is {left_lane_divider}m and distance to right lane_divider is uncertain\n"
else:
raise Exception("Should not reach here")
return prompts, distance_to_lane_divider
get_current_lane_divider_info = {
"name": "get_current_lane_divider",
"description": "Get the distance to both sides of road lane_dividers for the current ego-vehicle location",
"parameters": {
"type": "object",
"properties": {},
"required": [],
},
}
def get_current_lane_divider(data_dict):
boundary_map = data_dict["map"]["lane"][0].T
prompts = "Get distance to both sides of road lane_dividers of current ego-vehicle location:\n"
distance_to_lane_divider = []
x, y = 0.0, 0.0
X, Y, valid = location_to_pixel_coordinate(x, y)
if not valid:
distance_to_lane_divider.append(None)
prompts = None
else:
Y_max = Y+5 if Y+5 < boundary_map.shape[1] else boundary_map.shape[1] - 1
Y_min = Y-5 if Y-5 >= 0 else 0
# find left nearest lane divider
ind_x = np.where(boundary_map[:X, Y_min:Y_max])[0]
if len(ind_x) == 0:
left_lane_divider = None
else:
left_lane_divider = (X - np.max(ind_x)) * GRID_SIZE
# find right nearest lane divider
ind_x = np.where(boundary_map[X:, Y_min : Y_max])[0] + X
if len(ind_x) == 0:
right_lane_divider = None
else:
right_lane_divider = (np.min(ind_x) - X) * GRID_SIZE
distance_to_lane_divider.append((left_lane_divider, right_lane_divider))
if left_lane_divider is not None and right_lane_divider is not None:
prompts += f"Current ego-vehicle's distance to left lane_divider is {left_lane_divider}m and distance to right lane_divider is {right_lane_divider}m\n"
elif left_lane_divider is None and right_lane_divider is None:
prompts += f"Current ego-vehicle's distance to both lane_dividers are uncertain\n"
elif left_lane_divider is None and right_lane_divider is not None:
prompts += f"Current ego-vehicle's distance to left lane_divider is uncertain and distance to right lane_divider is {right_lane_divider}m\n"
elif left_lane_divider is not None and right_lane_divider is None:
prompts += f"Current ego-vehicle's distance to left lane_divider is {left_lane_divider}m and distance to right lane_divider is uncertain\n"
else:
raise Exception("Should not reach here")
return prompts, distance_to_lane_divider
get_nearest_pedestrian_crossing_info = {
"name": "get_nearest_pedestrian_crossing",
"description": "Get the location of the nearest pedestrian crossing to the ego-vehicle. If there is no such pedestrian crossing, return None",
"parameters": {
"type": "object",
"properties": {},
"required": [],
},
}
def get_nearest_pedestrian_crossing(data_dict):
boundary_map = data_dict["map"]["lane"][1].T
prompts = "Get the nearest pedestrian crossing location:\n"
distance_to_nearest_pedestrian_crossing = []
X, Y, valid = location_to_pixel_coordinate(0.0, 0.0)
if not valid:
prompts = None
return prompts, distance_to_nearest_pedestrian_crossing
else:
ind_X, ind_Y = np.where(boundary_map[:, Y:]) # Plz double check this
ind_Y += Y
if len(ind_X) == 0:
prompts = None
return prompts, distance_to_nearest_pedestrian_crossing
else:
dist = np.abs(ind_X - X) ** 2 + np.abs(ind_Y - Y) ** 2
ind = np.argmin(dist)
min_ped_crossing_X, min_ped_crossing_Y = ind_X[ind], ind_Y[ind]
min_ped_crossing_x, min_ped_crossing_y, _ = pixel_coordinate_to_location(min_ped_crossing_X, min_ped_crossing_Y)
prompts += f"The nearest pedestrian crossing is at ({min_ped_crossing_x:.2f}, {min_ped_crossing_y:.2f})\n"
distance_to_nearest_pedestrian_crossing.append((min_ped_crossing_x, min_ped_crossing_y))
return prompts, distance_to_nearest_pedestrian_crossing
get_leading_object_future_trajectory_info = {
"name": "get_leading_object_future_trajectory",
"description": "Get the predicted future trajectory of the leading object, the function will return a trajectory containing a series of waypoints. If there is no leading vehicle, return None",
"parameters": {
"type": "object",
"properties": {},
"required": [],
},
}
def get_leading_object_future_trajectory(data_dict, short=False):
objects = data_dict["objects"]
prompts = "Leading object future trajectory:\n"
detected_objs = []
for obj in objects:
# search for the leading object (at the same lane and in front of the ego vehicle in 10m)
obj_x, obj_y = obj["bbox"][:2]
if abs(obj_x) < 3.0 and obj_y >= 0.0 and obj_y < 10.0:
if short:
prompts += f"Leading object found, object type: {obj['name']}, object id: {obj['id']}, moving to: ({obj['traj'][5, 0]:.2f}, {obj['traj'][5, 1]:.2f})\n"
else:
trajectory_points = ', '.join(f"({x:.2f}, {y:.2f})" for x, y in obj['traj'][:6])
prompts += f"Leading object found, object type: {obj['name']}, object id: {obj['id']}, future waypoint coordinates in 6s: [{trajectory_points}]\n"
detected_objs.append(obj)
if len(detected_objs) == 0:
prompts = None
return prompts, detected_objs
get_future_trajectories_for_specific_objects_info = {
"name": "get_future_trajectories_for_specific_objects",
"description": "Get the future trajectories of specific objects (specified by a List of object ids, e.g.['o1', 'o2', 'o3']), the function will return trajectories for each object. If there is no object, return None",
"parameters": {
"type": "object",
"properties": {
"object_ids": {
"type": "array",
"items": {
"type": "integer",
"minimum": 0,
},
"description": "a list of integer object ids",
},
},
"required": ["object_ids"],
},
}
def get_future_trajectories_for_specific_objects(object_ids, data_dict, short=False):
objects = data_dict["objects"]
prompts = "Future trajectories for specific objects:\n"
detected_objs = []
for obj in objects:
# breakpoint()
if 'o'+str(obj["id"]) in object_ids:
if short:
prompts += f"Object type: {obj['name']}, object id: {obj['id']}, moving to: ({obj['traj'][5, 0]:.2f}, {obj['traj'][5, 1]:.2f})\n"
else:
trajectory_points = ', '.join(f"({x:.2f}, {y:.2f})" for x, y in obj['traj'][:6])
prompts += f"Object type: {obj['name']}, object id: {obj['id']}, future waypoint coordinates in 3s: [{trajectory_points}]\n"
detected_objs.append(obj)
if len(detected_objs) == 0:
prompts = None
return prompts, detected_objs
get_future_trajectories_in_range_info = {
"name": "get_future_trajectories_in_range",
"description": "Get the future trajectories where any waypoint in this trajectory falls into a given range (x_start, x_end)*(y_start, y_end)m^2, the function will return each trajectory that satisfies the condition. If there is no trajectory satisfied, return None",
"parameters": {
"type": "object",
"properties": {
"x_start": {
"type": "number",
"minimum": -50,
"maximum": 50,
"multipleOf" : 0.01,
"description": "start range of x axis",
},
"x_end": {
"type": "number",
"minimum": -50,
"maximum": 50,
"multipleOf" : 0.01,
"description": "end range of x axis",
},
"y_start": {
"type": "number",
"minimum": -50,
"maximum": 50,
"multipleOf" : 0.01,
"description": "start range of y axis",
},
"y_end": {
"type": "number",
"minimum": -50,
"maximum": 50,
"multipleOf" : 0.01,
"description": "end range of y axis",
},
},
"required": ["x_start", "x_end", "y_start", "y_end"],
},
}
def get_future_trajectories_in_range(x_start, x_end, y_start, y_end, data_dict, short=False):
objects = data_dict["objects"]
prompts = f"Future trajectories in X range {x_start:.2f}-{x_end:.2f} and Y range {y_start:.2f}-{y_end:.2f}:\n"
detected_objs = []
for obj in objects:
# search for the objects in range
obj_x, obj_y = obj["bbox"][:2]
if obj_x >= x_start and obj_x <= x_end and obj_y >= y_start and obj_y <= y_end:
if short:
prompts += f"Object found, object type: {obj['name']}, object id: {obj['id']}, moving to: ({obj['traj'][5, 0]:.2f}, {obj['traj'][5, 1]:.2f})\n"
else:
trajectory_points = ', '.join(f"({x:.2f}, {y:.2f})" for x, y in obj['traj'][:6])
prompts += f"Object found, object type: {obj['name']}, object id: {obj['id']}, future waypoint coordinates in 3s: [{trajectory_points}]\n"
detected_objs.append(obj)
if len(detected_objs) == 0:
prompts = None
return prompts, detected_objs
get_future_waypoint_of_specific_objects_at_timestep_info = {
"name": "get_future_waypoint_of_specific_objects_at_timestep",
"description": "Get the future waypoints of specific objects at a specific timestep, the function will return a list of waypoints. If there is no object or the object does not have a waypoint at the given timestep, return None",
"parameters": {
"type": "object",
"properties": {
"object_ids": {
"type": "array",
"items": {
"type": "integer",
"minimum": 0,
},
"description": "a list of object ids",
},
"timestep": {
"type": "integer",
"minimum": 1,
"maximum": 6,
"multipleOf" : 1,
"description": "the selected timestep of the future trajectory, integer value range [1-6]",
},
},
"required": ["object_ids", "timestep"],
},
}
def get_future_waypoint_of_specific_objects_at_timestep(object_ids, timestep, data_dict):
objects = data_dict["objects"]
prompts = f"Future waypoints of specific objects at time {timestep/2 + 0.5}s:\n"
detected_objs = []
for object_id in object_ids:
obj = objects[object_id]
if len(obj["traj"]) > timestep:
prompts += f"object type: {obj['name']}, object id: {obj['id']}, waypoint: ({obj['traj'][timestep, 0]:.2f}, {obj['traj'][timestep, 1]:.2f}) at timestep {timestep}\n"
else:
prompts = None
detected_objs.append(obj)
if len(prompts) == 0:
prompts = None
return prompts, detected_objs
get_all_future_trajectories_info = {
"name": "get_all_future_trajectories",
"description": "Get the predicted future trajectories of all objects in the whole scene, the function will return a list of object ids and their future trajectories. Always avoid using this function if there are other choices.",
"parameters": {
"type": "object",
"properties": {},
"required": [],
},
}
def get_all_future_trajectories(data_dict, short=False):
objects = data_dict["objects"]
prompts = "All future trajectories:\n"
for obj in objects:
if short:
prompts += f"Object type: {obj['name']}, object id: {obj['id']}, moving to: ({obj['traj'][5, 0]:.2f}, {obj['traj'][5, 1]:.2f})\n"
else:
trajectory_points = ', '.join(f"({x:.2f}, {y:.2f})" for x, y in obj['traj'][:6])
prompts += f"Object type: {obj['name']}, object id: {obj['id']}, future waypoint coordinates in 3s: [{trajectory_points}]\n"
if len(objects) == 0:
prompts = None
return prompts, objects
OCC_TH = 0.1
get_occupancy_at_locations_for_timestep_info = {
"name": "get_occupancy_at_locations_for_timestep",
"description": "Get the probability whether a list of locations [(x_1, y_1), ..., (x_n, y_n)] is occupied at the timestep t. If the location is out of the occupancy prediction scope, return None",
"parameters": {
"type": "object",
"properties": {
"locations": {
"type": "array",
"items": {
"type": "array",
"items": {
"type": "number"
},
"minItems": 2,
"maxItems": 2
},
"description": "occupancy at the locations [(x_1, y_1), ..., (x_n, y_n)]",
},
"timestep": {
"type": "integer",
"minimum": 0,
"maximum": 4,
"multipleOf" : 1,
"description": "time step t in the occupancy flow, must be one of [0, 1, 2, 3, 4], which denotes the future occupancy at [0s, 0.5s, 1s, 1.5s, 2s].",
},
},
"required": ["locations", "timestep"],
},
}
def get_occupancy_at_locations_for_timestep(locations, timestep, data_dict):
occ_map = data_dict["occupancy"].transpose(0, 2, 1)
occ_list = []
prompts = "Occupancy information:\n"
for location in locations:
x, y = location
X, Y, valid = location_to_pixel_coordinate(x, y)
T = timestep
# deal with exceptions
if not valid or T < 0 or T >= 5:
prompts = None
return prompts, False
occ = occ_map[T, X, Y]
if occ > OCC_TH:
prompts += f"Location ({x:.2f}, {y:.2f}) is occupied at timestep {timestep}\n"
else:
prompts += f"Location ({x:.2f}, {y:.2f}) is not occupied at timestep {timestep}\n"
occ_list.append(occ)
return prompts, occ_list
check_occupancy_for_planned_trajectory_info = {
"name": "check_occupancy_for_planned_trajectory",
"description": "Evaluate whether the planned trajectory [(x_1, y_1), ..., (x_n, y_n)] collides with other objects.",
"parameters": {
"type": "object",
"properties": {
"trajectory": {
"type": "array",
"items": {
"type": "array",
"items": {
"type": "number"
},
"minItems": 2,
"maxItems": 2
},
"minItems": 6,
"maxItems": 7,
"description": "the planned trajectory [(x_1, y_1), ..., (x_n, y_n)]",
},
},
"required": ["trajectory"],
},
}
def check_occupancy_for_planned_trajectory(trajectory, data_dict):
occ_map = data_dict["occupancy"].transpose(0, 2, 1)
prompts = "Check collision of the planned trajectory:\n"
collision = False
for timestep, location in enumerate(trajectory):
x, y = location
X, Y, valid = location_to_pixel_coordinate(x, y)
if not valid: # trajectory out of range
continue
T = timestep + 1 # We assume the time step starting from 1
if T >= 5:
continue
occ = occ_map[T, X, Y]
if occ > OCC_TH:
prompts += f"Waypoint ({x:.2f}, {y:.2f}) collides at timestep {T}\n"
collision = True
else:
continue
if not collision:
prompts += f"The planned trajectory does not collide with any other objects.\n"
return prompts, collision
def check_occupancy_for_planned_trajectory_and_surrounding(trajectory, data_dict):
occ_map = data_dict["occupancy"].transpose(0, 2, 1)
prompts = "Check collision of the planned trajectory:\n"
collision = False
for timestep, location in enumerate(trajectory):
x, y = location
X, Y, valid = location_to_pixel_coordinate(x, y)
if not valid: # trajectory out of range
continue
T = timestep + 1 # We assume the time step starting from 1
if T >= 5:
continue
occ = occ_map[T, X, Y]
if occ > OCC_TH:
prompts += f"Waypoint ({x:.2f}, {y:.2f}) collides at timestep {T}\n"
# check surrounding
surrounding = occ_map[T, X-1:X+2, Y-1:Y+2]
if True in surrounding:
index_x, index_y = np.where(surrounding)
index_X, index_Y = index_x + X - 1, index_y + Y - 1
prompts += f"- Surrounding not occupied region: {[(pixel_coordinate_to_location(x, y)[:-1]) for x, y in zip(index_X, index_Y)]}\n"
collision = True
else:
continue
if not collision:
prompts += f"The planned trajectory does not collide with any other objects.\n"
return prompts, collision
def check_collision(car_length, car_width, trajectory, occ_map):
pts = np.array([
[-car_length / 2. + 0.5, car_width / 2.],
[car_length / 2. + 0.5, car_width / 2.],
[car_length / 2. + 0.5, -car_width / 2.],
[-car_length / 2. + 0.5, -car_width / 2.],
])
pts = (pts - (- MAP_METER)) / GRID_SIZE
pts[:, [0, 1]] = pts[:, [1, 0]]
rr, cc = polygon(pts[:,1], pts[:,0])
rc = np.concatenate([rr[:,None], cc[:,None]], axis=-1) # all points inside the box (car)
n_future = occ_map.shape[0] # trajectory.shape[0] since we only have 4 future occupancy
trajectory = trajectory * np.array([-1, 1])
trajectory = trajectory[:, np.newaxis, :] # (n_future, 1, 2)
trajectory[:,:,[0,1]] = trajectory[:,:,[1,0]]
trajectory = trajectory / GRID_SIZE
trajectory = trajectory + rc # (n_future, 32, 2) # all points during the trajectory
r = trajectory[:,:,0].astype(np.int32) # (n_future, 32) decompose the points into row
r = np.clip(r, 0, occ_map.shape[1] - 1)
c = trajectory[:,:,1].astype(np.int32) # (n_future, 32) decompose the points into column
c = np.clip(c, 0, occ_map.shape[2] - 1)
collision = np.full(trajectory.shape[0], False) # we set the length of collision same as the length of trajectory though we only check 4 timesteps
for t in range(n_future):
rr = r[t]
cc = c[t]
I = np.logical_and(
np.logical_and(rr >= 0, rr < occ_map.shape[1]),
np.logical_and(cc >= 0, cc < occ_map.shape[2]),
)
collision[t] = np.any(occ_map[t, rr[I], cc[I]] > OCC_TH)
return collision
def check_occupancy_for_planned_trajectory_correct(trajectory, data_dict, safe_margin=1., token=None):
'''
trajs: torch.Tensor (B, n_future, 2)
segmentation: torch.Tensor (B, n_future, 200, 200)
'''
occ_map = data_dict["occupancy"]
occ_map = np.fliplr(occ_map.transpose(1,2,0)).transpose(2,0,1)
occ_map = occ_map[1:] # remove the current timestep
if occ_map.shape[0] == 4: # if we only have 4 future occupancy
# New shape
new_shape = (6, 200, 200)
# Initialize the new array with the new shape
expanded_array = np.zeros(new_shape)
# Copy the original data
expanded_array[:4] = occ_map
# Assume that the conditions in the last second continue
expanded_array[4] = occ_map[-1]
expanded_array[5] = occ_map[-1]
occ_map = expanded_array
collision_t = check_collision(CAR_LENGTH+safe_margin, CAR_WIDTH+safe_margin, trajectory, occ_map)
return collision_t |