|
|
import cv2
|
|
|
from ultralytics import YOLO
|
|
|
import tensorflow as tf
|
|
|
|
|
|
|
|
|
model = YOLO('yolov8m.pt')
|
|
|
|
|
|
|
|
|
cap = cv2.VideoCapture(0)
|
|
|
|
|
|
with tf.device('/device:GPU:0'):
|
|
|
while cap.isOpened():
|
|
|
ret, frame = cap.read()
|
|
|
if not ret:
|
|
|
break
|
|
|
|
|
|
|
|
|
results = model(frame)
|
|
|
|
|
|
|
|
|
for result in results:
|
|
|
boxes = result.boxes.xyxy.cpu().numpy()
|
|
|
scores = result.boxes.conf.cpu().numpy()
|
|
|
classes = result.boxes.cls.cpu().numpy()
|
|
|
|
|
|
|
|
|
for i in range(len(boxes)):
|
|
|
box = boxes[i]
|
|
|
score = scores[i]
|
|
|
class_id = int(classes[i])
|
|
|
label = model.names[class_id]
|
|
|
|
|
|
if score > 0.5:
|
|
|
|
|
|
start_x, start_y, end_x, end_y = map(int, box[:4])
|
|
|
|
|
|
|
|
|
cv2.rectangle(frame, (start_x, start_y), (end_x, end_y), (0, 255, 0), 2)
|
|
|
|
|
|
|
|
|
label_text = f"{label}: {score:.2f}"
|
|
|
cv2.putText(frame, label_text, (start_x, start_y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
|
|
|
|
|
|
|
|
cv2.imshow('YOLOv8 Object Detection', frame)
|
|
|
|
|
|
if cv2.waitKey(1) & 0xFF == ord('q'):
|
|
|
break
|
|
|
|
|
|
|
|
|
cap.release()
|
|
|
cv2.destroyAllWindows()
|
|
|
|