File size: 96,140 Bytes
1f24ada
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c5f7a4
 
1f24ada
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c5f7a4
1f24ada
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c5f7a4
1f24ada
 
 
 
 
 
 
 
 
 
 
9c5f7a4
1f24ada
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c5f7a4
 
 
 
 
 
1f24ada
9c5f7a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f24ada
9c5f7a4
1f24ada
 
 
 
 
 
 
 
 
9c5f7a4
1f24ada
 
 
 
 
 
 
 
 
 
 
9c5f7a4
1f24ada
 
9c5f7a4
 
 
 
 
 
 
1f24ada
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c5f7a4
1f24ada
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c5f7a4
 
 
1f24ada
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c5f7a4
1f24ada
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c5f7a4
1f24ada
9c5f7a4
1f24ada
 
 
 
9c5f7a4
 
 
 
 
1f24ada
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
# ============================================================================
# TinyFlux-Deep v4.1 Training Cell - Dual Expert Distillation (Lune + Sol)
# ============================================================================
# Integrates:
#   - Lune: SD1.5-flow trajectory guidance (mid-block features)
#   - Sol: Geometric attention prior (attention statistics + spatial importance)
#
# Both expert features are PRECACHED at 10 timestep buckets for speed.
# At inference, predictors run standalone - no teachers needed.
#
# USAGE: Run model_v4.py cell first, then this cell
# ============================================================================

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader, Dataset
from datasets import load_dataset, concatenate_datasets
from transformers import T5EncoderModel, T5Tokenizer, CLIPTextModel, CLIPTokenizer
from huggingface_hub import HfApi, hf_hub_download
from safetensors.torch import save_file, load_file
from torch.utils.tensorboard import SummaryWriter
from tqdm.auto import tqdm
import numpy as np
import math
import json
import random
from typing import Tuple, Optional, Dict, List
import os
from datetime import datetime
from PIL import Image

# ============================================================================
# CUDA OPTIMIZATIONS
# ============================================================================
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
torch.backends.cudnn.benchmark = True
torch.set_float32_matmul_precision('high')

import warnings

warnings.filterwarnings('ignore', message='.*TF32.*')

# ============================================================================
# CONFIG
# ============================================================================
BATCH_SIZE = 8
GRAD_ACCUM = 4
LR = 3e-4
EPOCHS = 10
MAX_SEQ = 128
SHIFT = 3.0
DEVICE = "cuda"
DTYPE = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16

ALLOW_WEIGHT_UPGRADE = True

# HuggingFace Hub
HF_REPO = "AbstractPhil/tiny-flux-deep"
SAVE_EVERY = 1562
UPLOAD_EVERY = 1562
SAMPLE_EVERY = 781
LOG_EVERY = 200
LOG_UPLOAD_EVERY = 1562

# Checkpoint loading
# v4.1 init checkpoint (converted from v3 step_401434)
# Options:
#   "hub:checkpoint_runs/v4_init/lailah_401434_v4_init" - v4.1 init (no EMA, fresh Sol)
#   "hub:step_401434" - v3 checkpoint (will auto-remap expert_predictor -> lune_predictor)
#   "latest" - latest local checkpoint
#   "none" - start fresh
LOAD_TARGET = "hub:checkpoint_runs/v4_init/lailah_401434_v4_init"
RESUME_STEP = 401434

# ============================================================================
# EXPERT REPOSITORY (both Lune and Sol)
# ============================================================================
EXPERTS_REPO = "AbstractPhil/tinyflux-experts"

# ============================================================================
# LUNE EXPERT DISTILLATION CONFIG (trajectory guidance)
# ============================================================================
ENABLE_LUNE_DISTILLATION = True
LUNE_FILENAME = "sd15-flow-lune-unet.safetensors"
LUNE_DIM = 1280  # SD1.5 mid-block dimension
LUNE_HIDDEN_DIM = 512
LUNE_DROPOUT = 0.1
LUNE_LOSS_WEIGHT = 0.1
LUNE_WARMUP_STEPS = 1000
LUNE_DISTILL_MODE = "cosine"  # "hard", "soft", "cosine", "huber"

# ============================================================================
# SOL ATTENTION PRIOR CONFIG (structural guidance)
# ============================================================================
ENABLE_SOL_DISTILLATION = True
SOL_FILENAME = "sd15-flow-sol-unet.safetensors"
SOL_HIDDEN_DIM = 256
SOL_SPATIAL_SIZE = 8  # 8x8 spatial importance map
SOL_GEOMETRIC_WEIGHT = 0.7  # 70% geometric, 30% learned
SOL_LOSS_WEIGHT = 0.05
SOL_WARMUP_STEPS = 2000  # Start Sol later than Lune

# Timestep buckets for precaching (shared by Lune and Sol)
EXPERT_T_BUCKETS = torch.linspace(0.05, 0.95, 10)

# ============================================================================
# LOSS CONFIG
# ============================================================================
USE_HUBER_LOSS = True
HUBER_DELTA = 0.1
USE_SPATIAL_WEIGHTING = False  # Weight main loss by Sol spatial importance

# ============================================================================
# DATASET CONFIG
# ============================================================================
ENABLE_PORTRAIT = False
ENABLE_SCHNELL = False
ENABLE_SPORTFASHION = False
ENABLE_SYNTHMOCAP = False
ENABLE_IMAGENET = False
ENABLE_OBJECT_RELATIONS = True

PORTRAIT_REPO = "AbstractPhil/ffhq_flux_latents_repaired"
PORTRAIT_NUM_SHARDS = 11
SCHNELL_REPO = "AbstractPhil/flux-schnell-teacher-latents"
SCHNELL_CONFIGS = ["train_512"]
SPORTFASHION_REPO = "Pianokill/SportFashion_512x512"
SYNTHMOCAP_REPO = "toyxyz/SynthMoCap_smpl_512"
IMAGENET_REPO = "AbstractPhil/synthetic-imagenet-1k"
IMAGENET_SUBSET = "schnell_512"
OBJECT_RELATIONS_REPO = "AbstractPhil/synthetic-object-relations"

# Confidence threshold for misprediction filtering
IMAGENET_CONFIDENCE_THRESHOLD = 0.5  # If confident but wrong, remove label

FG_LOSS_WEIGHT = 2.0
BG_LOSS_WEIGHT = 0.5
USE_MASKED_LOSS = False
MIN_SNR_GAMMA = 5.0

# Paths
CHECKPOINT_DIR = "./tiny_flux_deep_checkpoints"
LOG_DIR = "./tiny_flux_deep_logs"
SAMPLE_DIR = "./tiny_flux_deep_samples"
ENCODING_CACHE_DIR = "./encoding_cache"
LATENT_CACHE_DIR = "./latent_cache"

os.makedirs(CHECKPOINT_DIR, exist_ok=True)
os.makedirs(LOG_DIR, exist_ok=True)
os.makedirs(SAMPLE_DIR, exist_ok=True)
os.makedirs(ENCODING_CACHE_DIR, exist_ok=True)
os.makedirs(LATENT_CACHE_DIR, exist_ok=True)

# ============================================================================
# REGULARIZATION CONFIG
# ============================================================================
TEXT_DROPOUT = 0.1
GUIDANCE_DROPOUT = 0.1
EMA_DECAY = 0.9999


# ============================================================================
# LUNE FEATURE CACHE (SD1.5 mid-block features)
# ============================================================================
class LuneFeatureCache:
    """
    Precached SD1.5-flow Lune features with timestep interpolation.
    Features extracted at 10 timestep buckets [0.05, 0.15, ..., 0.95].
    """

    def __init__(self, features: torch.Tensor, t_buckets: torch.Tensor, dtype=torch.float16):
        self.features = features.to(dtype)  # [N, 10, 1280]
        self.t_buckets = t_buckets
        self.t_min = t_buckets[0].item()
        self.t_max = t_buckets[-1].item()
        self.t_step = (t_buckets[1] - t_buckets[0]).item()
        self.n_buckets = len(t_buckets)
        self.dtype = dtype

    def get_features(self, indices: torch.Tensor, timesteps: torch.Tensor) -> torch.Tensor:
        device = timesteps.device
        t_clamped = timesteps.float().clamp(self.t_min, self.t_max)
        t_idx_float = (t_clamped - self.t_min) / self.t_step
        t_idx_low = t_idx_float.long().clamp(0, self.n_buckets - 2)
        t_idx_high = (t_idx_low + 1).clamp(0, self.n_buckets - 1)
        alpha = (t_idx_float - t_idx_low.float()).unsqueeze(-1)

        idx_cpu = indices.cpu()
        t_low_cpu = t_idx_low.cpu()
        t_high_cpu = t_idx_high.cpu()

        f_low = self.features[idx_cpu, t_low_cpu]
        f_high = self.features[idx_cpu, t_high_cpu]

        result = (1 - alpha.cpu()) * f_low + alpha.cpu() * f_high
        return result.to(device=device, dtype=self.dtype)


# ============================================================================
# SOL FEATURE CACHE (attention statistics + spatial importance)
# ============================================================================
class SolFeatureCache:
    """
    Precached Sol attention statistics with timestep interpolation.
    
    Statistics per sample per timestep:
      - stats: [N, 10, 4] - locality, entropy, clustering, sparsity
      - spatial: [N, 10, 8, 8] - spatial importance map
    """

    def __init__(self, stats: torch.Tensor, spatial: torch.Tensor, 
                 t_buckets: torch.Tensor, dtype=torch.float16):
        self.stats = stats.to(dtype)  # [N, 10, 4]
        self.spatial = spatial.to(dtype)  # [N, 10, 8, 8]
        self.t_buckets = t_buckets
        self.t_min = t_buckets[0].item()
        self.t_max = t_buckets[-1].item()
        self.t_step = (t_buckets[1] - t_buckets[0]).item()
        self.n_buckets = len(t_buckets)
        self.dtype = dtype

    def get_features(self, indices: torch.Tensor, timesteps: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        device = timesteps.device
        t_clamped = timesteps.float().clamp(self.t_min, self.t_max)
        t_idx_float = (t_clamped - self.t_min) / self.t_step
        t_idx_low = t_idx_float.long().clamp(0, self.n_buckets - 2)
        t_idx_high = (t_idx_low + 1).clamp(0, self.n_buckets - 1)
        
        alpha_stats = (t_idx_float - t_idx_low.float()).unsqueeze(-1)
        alpha_spatial = alpha_stats.unsqueeze(-1)

        idx_cpu = indices.cpu()
        t_low_cpu = t_idx_low.cpu()
        t_high_cpu = t_idx_high.cpu()

        s_low = self.stats[idx_cpu, t_low_cpu]
        s_high = self.stats[idx_cpu, t_high_cpu]
        stats_result = (1 - alpha_stats.cpu()) * s_low + alpha_stats.cpu() * s_high

        sp_low = self.spatial[idx_cpu, t_low_cpu]
        sp_high = self.spatial[idx_cpu, t_high_cpu]
        spatial_result = (1 - alpha_spatial.cpu()) * sp_low + alpha_spatial.cpu() * sp_high

        return (
            stats_result.to(device=device, dtype=self.dtype),
            spatial_result.to(device=device, dtype=self.dtype)
        )


def load_or_extract_lune_features(cache_path: str, prompts: List[str], name: str,
                                   clip_tok, clip_enc, t_buckets: torch.Tensor,
                                   batch_size: int = 32) -> Optional[LuneFeatureCache]:
    """Load cached Lune features or extract from SD1.5-flow teacher."""
    if not prompts or not ENABLE_LUNE_DISTILLATION:
        return None

    if os.path.exists(cache_path):
        print(f"Loading cached {name} Lune features...")
        cached = torch.load(cache_path, map_location="cpu")
        cache = LuneFeatureCache(cached["features"], cached["t_buckets"], DTYPE)
        print(f"  βœ“ Loaded {cache.features.shape[0]} samples Γ— {cache.n_buckets} timesteps")
        return cache

    print(f"Extracting {name} Lune features ({len(prompts)} Γ— {len(t_buckets)} timesteps)...")
    print(f"  This is a one-time operation, will be cached.")

    checkpoint_path = hf_hub_download(
        repo_id=EXPERTS_REPO,
        filename=LUNE_FILENAME,
    )
    print(f"  Loaded Lune from {EXPERTS_REPO}/{LUNE_FILENAME}")

    from diffusers import UNet2DConditionModel
    unet = UNet2DConditionModel.from_pretrained(
        "stable-diffusion-v1-5/stable-diffusion-v1-5",
        subfolder="unet",
        torch_dtype=torch.float16,
    ).to(DEVICE).eval()

    state_dict = load_file(checkpoint_path)
    unet.load_state_dict(state_dict, strict=False)
    
    # Convert to fp16 and compile for speed
    unet = unet.half()
    unet = torch.compile(unet, mode="reduce-overhead")
    print(f"  βœ“ Lune UNet compiled (fp16)")

    for p in unet.parameters():
        p.requires_grad = False

    mid_features = [None]

    def hook_fn(module, inp, out):
        mid_features[0] = out.mean(dim=[2, 3])

    unet.mid_block.register_forward_hook(hook_fn)

    n_prompts = len(prompts)
    n_buckets = len(t_buckets)
    all_features = torch.zeros(n_prompts, n_buckets, LUNE_DIM, dtype=torch.float16)

    # A100 can handle large batches - 64 prompts Γ— 10 timesteps = 640 UNet forward passes batched
    # SD1.5 UNet at 64x64 latents uses ~2GB for batch of 64, so 640 samples ~10-15GB
    LUNE_BATCH_PROMPTS = 64  # Number of prompts per iteration
    
    with torch.no_grad(), torch.cuda.amp.autocast(dtype=torch.float16):
        for start_idx in tqdm(range(0, n_prompts, LUNE_BATCH_PROMPTS), desc=f"Extracting {name} Lune"):
            end_idx = min(start_idx + LUNE_BATCH_PROMPTS, n_prompts)
            batch_prompts = prompts[start_idx:end_idx]
            B = len(batch_prompts)

            # Encode CLIP once per prompt batch
            clip_inputs = clip_tok(
                batch_prompts, return_tensors="pt", padding="max_length",
                max_length=77, truncation=True
            ).to(DEVICE)
            clip_hidden = clip_enc(**clip_inputs).last_hidden_state  # [B, 77, 768]

            # Expand for all timesteps: [B * n_buckets, 77, 768]
            clip_expanded = clip_hidden.unsqueeze(1).expand(-1, n_buckets, -1, -1)
            clip_expanded = clip_expanded.reshape(B * n_buckets, 77, -1)

            # Create timesteps for all buckets: [B * n_buckets]
            t_expanded = t_buckets.unsqueeze(0).expand(B, -1).reshape(-1).to(DEVICE)

            # Random latents: [B * n_buckets, 4, 64, 64]
            latents = torch.randn(B * n_buckets, 4, 64, 64, device=DEVICE, dtype=DTYPE)

            # Single batched UNet forward pass
            _ = unet(latents, t_expanded * 1000, encoder_hidden_states=clip_expanded.to(DTYPE))

            # Reshape features back to [B, n_buckets, LUNE_DIM]
            features = mid_features[0].reshape(B, n_buckets, -1)
            all_features[start_idx:end_idx] = features.cpu().to(torch.float16)

    del unet
    torch.cuda.empty_cache()

    torch.save({"features": all_features, "t_buckets": t_buckets}, cache_path)
    print(f"  βœ“ Cached to {cache_path}")
    print(f"  Size: {all_features.numel() * 2 / 1e9:.2f} GB")

    return LuneFeatureCache(all_features, t_buckets, DTYPE)


def load_or_extract_sol_features(cache_path: str, prompts: List[str], name: str,
                                  clip_tok, clip_enc, t_buckets: torch.Tensor,
                                  spatial_size: int = 8,
                                  batch_size: int = 32) -> Optional[SolFeatureCache]:
    """Load cached Sol features or generate geometric heuristics."""
    if not prompts or not ENABLE_SOL_DISTILLATION:
        return None

    if os.path.exists(cache_path):
        print(f"Loading cached {name} Sol features...")
        cached = torch.load(cache_path, map_location="cpu")
        cache = SolFeatureCache(
            cached["stats"], cached["spatial"], cached["t_buckets"], DTYPE
        )
        print(f"  βœ“ Loaded {cache.stats.shape[0]} samples Γ— {cache.n_buckets} timesteps")
        return cache

    print(f"Generating {name} Sol features ({len(prompts)} Γ— {len(t_buckets)} timesteps)...")
    print(f"  Using geometric heuristics (no teacher needed)")

    n_prompts = len(prompts)
    n_buckets = len(t_buckets)
    
    # Vectorized generation - no loops needed
    # Stats: [n_buckets, 4] then broadcast to [n_prompts, n_buckets, 4]
    t_vals = t_buckets.float()  # [n_buckets]
    
    locality = 1 - t_vals  # [n_buckets]
    entropy = t_vals
    clustering = 0.5 - 0.3 * (t_vals - 0.5).abs()
    sparsity = 1 - t_vals
    
    stats_per_t = torch.stack([locality, entropy, clustering, sparsity], dim=-1)  # [n_buckets, 4]
    all_stats = stats_per_t.unsqueeze(0).expand(n_prompts, -1, -1).to(torch.float16)  # [n_prompts, n_buckets, 4]
    
    # Spatial: [n_buckets, spatial_size, spatial_size] then broadcast
    y, x = torch.meshgrid(
        torch.linspace(-1, 1, spatial_size),
        torch.linspace(-1, 1, spatial_size),
        indexing='ij'
    )
    center_dist = torch.sqrt(x**2 + y**2)  # [spatial_size, spatial_size]
    
    # Vectorized across timesteps: [n_buckets, spatial_size, spatial_size]
    t_weight = (1 - t_vals).view(-1, 1, 1)  # [n_buckets, 1, 1]
    center_bias = 1 - center_dist.unsqueeze(0) * t_weight  # [n_buckets, spatial_size, spatial_size]
    center_bias = center_bias / center_bias.sum(dim=[-2, -1], keepdim=True)  # Normalize per timestep
    
    all_spatial = center_bias.unsqueeze(0).expand(n_prompts, -1, -1, -1).to(torch.float16)  # [n_prompts, n_buckets, 8, 8]

    torch.save({
        "stats": all_stats,
        "spatial": all_spatial,
        "t_buckets": t_buckets
    }, cache_path)
    print(f"  βœ“ Cached to {cache_path}")

    return SolFeatureCache(all_stats, all_spatial, t_buckets, DTYPE)



# ============================================================================
# EMA
# ============================================================================
class EMA:
    def __init__(self, model, decay=0.9999):
        self.decay = decay
        self.shadow = {}
        self._backup = {}
        if hasattr(model, '_orig_mod'):
            state = model._orig_mod.state_dict()
        else:
            state = model.state_dict()
        for k, v in state.items():
            self.shadow[k] = v.clone().detach()

    @torch.no_grad()
    def update(self, model):
        if hasattr(model, '_orig_mod'):
            state = model._orig_mod.state_dict()
        else:
            state = model.state_dict()
        for k, v in state.items():
            if k in self.shadow:
                self.shadow[k].lerp_(v.to(self.shadow[k].dtype), 1 - self.decay)

    def apply_shadow_for_eval(self, model):
        if hasattr(model, '_orig_mod'):
            self._backup = {k: v.clone() for k, v in model._orig_mod.state_dict().items()}
            model._orig_mod.load_state_dict(self.shadow)
        else:
            self._backup = {k: v.clone() for k, v in model.state_dict().items()}
            model.load_state_dict(self.shadow)

    def restore(self, model):
        if hasattr(model, '_orig_mod'):
            model._orig_mod.load_state_dict(self._backup)
        else:
            model.load_state_dict(self._backup)
        self._backup = {}

    def state_dict(self):
        return {'shadow': self.shadow, 'decay': self.decay}

    def sync_from_model(self, model, pattern=None):
        if hasattr(model, '_orig_mod'):
            model_state = model._orig_mod.state_dict()
        else:
            model_state = model.state_dict()
        
        synced = 0
        for k, v in model_state.items():
            if pattern is None or pattern in k:
                if k in self.shadow:
                    self.shadow[k] = v.clone().to(self.shadow[k].device)
                    synced += 1
        
        print(f"  βœ“ Synced EMA: {synced} weights" + (f" matching '{pattern}'" if pattern else ""))

    def load_state_dict(self, state):
        self.shadow = {k: v.clone() for k, v in state['shadow'].items()}
        self.decay = state.get('decay', self.decay)

    def load_shadow(self, shadow_state, model=None):
        device = next(iter(self.shadow.values())).device if self.shadow else 'cuda'

        loaded = 0
        skipped_old = 0
        initialized_from_model = 0

        for k, v in shadow_state.items():
            if k in self.shadow:
                self.shadow[k] = v.clone().to(device)
                loaded += 1
            else:
                skipped_old += 1

        if model is not None:
            if hasattr(model, '_orig_mod'):
                model_state = model._orig_mod.state_dict()
            else:
                model_state = model.state_dict()
            
            for k in self.shadow:
                if k not in shadow_state and k in model_state:
                    self.shadow[k] = model_state[k].clone().to(device)
                    initialized_from_model += 1

        print(f"  βœ“ Restored EMA: {loaded} loaded, {skipped_old} deprecated, {initialized_from_model} new (from model)")


# ============================================================================
# REGULARIZATION
# ============================================================================
def apply_text_dropout(t5_embeds, clip_pooled, dropout_prob=0.1):
    B = t5_embeds.shape[0]
    mask = torch.rand(B, device=t5_embeds.device) < dropout_prob
    t5_embeds = t5_embeds.clone()
    clip_pooled = clip_pooled.clone()
    t5_embeds[mask] = 0
    clip_pooled[mask] = 0
    return t5_embeds, clip_pooled, mask


# ============================================================================
# MASKING UTILITIES
# ============================================================================
def detect_background_color(image: Image.Image, sample_size: int = 100) -> Tuple[int, int, int]:
    img = np.array(image)
    if len(img.shape) == 2:
        img = np.stack([img] * 3, axis=-1)
    h, w = img.shape[:2]
    corners = [
        img[:sample_size, :sample_size],
        img[:sample_size, -sample_size:],
        img[-sample_size:, :sample_size],
        img[-sample_size:, -sample_size:],
    ]
    corner_pixels = np.concatenate([c.reshape(-1, 3) for c in corners], axis=0)
    bg_color = np.median(corner_pixels, axis=0).astype(np.uint8)
    return tuple(bg_color)


def create_product_mask(image: Image.Image, threshold: int = 30) -> np.ndarray:
    img = np.array(image).astype(np.float32)
    if len(img.shape) == 2:
        img = np.stack([img] * 3, axis=-1)
    bg_color = detect_background_color(image)
    bg_color = np.array(bg_color, dtype=np.float32)
    diff = np.sqrt(np.sum((img - bg_color) ** 2, axis=-1))
    mask = (diff > threshold).astype(np.float32)
    return mask


def create_smpl_mask(conditioning_image: Image.Image, threshold: int = 20) -> np.ndarray:
    img = np.array(conditioning_image).astype(np.float32)
    if len(img.shape) == 2:
        return (img > threshold).astype(np.float32)
    r, g, b = img[:, :, 0], img[:, :, 1], img[:, :, 2]
    is_background = (g > r + 20) & (g > b + 20)
    mask = (~is_background).astype(np.float32)
    return mask


def downsample_mask_to_latent(mask: np.ndarray, latent_h: int = 64, latent_w: int = 64) -> torch.Tensor:
    mask_pil = Image.fromarray((mask * 255).astype(np.uint8))
    mask_pil = mask_pil.resize((latent_w, latent_h), Image.Resampling.BILINEAR)
    mask_latent = np.array(mask_pil).astype(np.float32) / 255.0
    return torch.from_numpy(mask_latent)


# ============================================================================
# HF HUB SETUP
# ============================================================================
print("Setting up HuggingFace Hub...")
api = HfApi()


# ============================================================================
# FLOW MATCHING HELPERS
# ============================================================================
def flux_shift(t, s=SHIFT):
    return s * t / (1 + (s - 1) * t)


def min_snr_weight(t, gamma=MIN_SNR_GAMMA):
    snr = (t / (1 - t).clamp(min=1e-5)).pow(2)
    return torch.clamp(snr, max=gamma) / snr.clamp(min=1e-5)


# ============================================================================
# LOAD TEXT ENCODERS
# ============================================================================
print("Loading text encoders...")
t5_tok = T5Tokenizer.from_pretrained("google/flan-t5-base")
t5_enc = T5EncoderModel.from_pretrained("google/flan-t5-base", torch_dtype=DTYPE).to(DEVICE).eval()
for p in t5_enc.parameters():
    p.requires_grad = False

clip_tok = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
clip_enc = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=DTYPE).to(DEVICE).eval()
for p in clip_enc.parameters():
    p.requires_grad = False
print("βœ“ Text encoders loaded")

# ============================================================================
# LOAD VAE
# ============================================================================
print("Loading VAE...")
from diffusers import AutoencoderKL

vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=DTYPE).to(
    DEVICE).eval()
for p in vae.parameters():
    p.requires_grad = False
VAE_SCALE = vae.config.scaling_factor
print(f"βœ“ VAE loaded (scale={VAE_SCALE})")


# ============================================================================
# ENCODING FUNCTIONS
# ============================================================================
@torch.no_grad()
def encode_prompt(prompt: str) -> Tuple[torch.Tensor, torch.Tensor]:
    t5_inputs = t5_tok(prompt, return_tensors="pt", padding="max_length",
                       max_length=MAX_SEQ, truncation=True).to(DEVICE)
    t5_out = t5_enc(**t5_inputs).last_hidden_state
    clip_inputs = clip_tok(prompt, return_tensors="pt", padding="max_length",
                           max_length=77, truncation=True).to(DEVICE)
    clip_out = clip_enc(**clip_inputs).pooler_output
    return t5_out.squeeze(0), clip_out.squeeze(0)


@torch.no_grad()
@torch.no_grad()
def encode_prompts_batched(prompts: List[str], batch_size: int = 128) -> Tuple[torch.Tensor, torch.Tensor]:
    """Batch encode prompts with T5 and CLIP."""
    all_t5 = []
    all_clip = []
    for i in tqdm(range(0, len(prompts), batch_size), desc="Encoding prompts", leave=False):
        batch = prompts[i:i + batch_size]
        t5_inputs = t5_tok(batch, return_tensors="pt", padding="max_length",
                           max_length=MAX_SEQ, truncation=True).to(DEVICE)
        t5_out = t5_enc(**t5_inputs).last_hidden_state
        all_t5.append(t5_out.cpu())
        clip_inputs = clip_tok(batch, return_tensors="pt", padding="max_length",
                               max_length=77, truncation=True).to(DEVICE)
        clip_out = clip_enc(**clip_inputs).pooler_output
        all_clip.append(clip_out.cpu())
    return torch.cat(all_t5, dim=0), torch.cat(all_clip, dim=0)


@torch.no_grad()
def encode_image_to_latent(image: Image.Image) -> torch.Tensor:
    if image.mode != "RGB":
        image = image.convert("RGB")
    if image.size != (512, 512):
        image = image.resize((512, 512), Image.Resampling.LANCZOS)
    img_tensor = torch.from_numpy(np.array(image)).float() / 255.0
    img_tensor = img_tensor.permute(2, 0, 1).unsqueeze(0)
    img_tensor = (img_tensor * 2.0 - 1.0).to(DEVICE, dtype=DTYPE)
    latent = vae.encode(img_tensor).latent_dist.sample()
    latent = latent * VAE_SCALE
    return latent.squeeze(0).cpu()



# ============================================================================
# LOAD DATASETS
# ============================================================================

portrait_ds = None
portrait_indices = []
portrait_prompts = []

if ENABLE_PORTRAIT:
    print(f"\n[1/6] Loading portrait dataset from {PORTRAIT_REPO}...")
    portrait_shards = []
    for i in range(PORTRAIT_NUM_SHARDS):
        split_name = f"train_{i:02d}"
        print(f"  Loading {split_name}...")
        shard = load_dataset(PORTRAIT_REPO, split=split_name)
        portrait_shards.append(shard)
    portrait_ds = concatenate_datasets(portrait_shards)
    print(f"βœ“ Portrait: {len(portrait_ds)} base samples")
    print("  Extracting prompts (columnar)...")
    florence_list = list(portrait_ds["text_florence"])
    llava_list = list(portrait_ds["text_llava"])
    blip_list = list(portrait_ds["text_blip"])
    for i, (f, l, b) in enumerate(zip(florence_list, llava_list, blip_list)):
        if f and f.strip():
            portrait_indices.append(i)
            portrait_prompts.append(f)
        if l and l.strip():
            portrait_indices.append(i)
            portrait_prompts.append(l)
        if b and b.strip():
            portrait_indices.append(i)
            portrait_prompts.append(b)
    print(f"  Expanded: {len(portrait_prompts)} samples (3 prompts/image)")
else:
    print("\n[1/6] Portrait dataset DISABLED")

schnell_ds = None
schnell_prompts = []

if ENABLE_SCHNELL:
    print(f"\n[2/6] Loading schnell teacher dataset from {SCHNELL_REPO}...")
    schnell_datasets = []
    for config in SCHNELL_CONFIGS:
        print(f"  Loading {config}...")
        ds = load_dataset(SCHNELL_REPO, config, split="train")
        schnell_datasets.append(ds)
        print(f"    {len(ds)} samples")
    schnell_ds = concatenate_datasets(schnell_datasets)
    schnell_prompts = list(schnell_ds["prompt"])
    print(f"βœ“ Schnell: {len(schnell_ds)} samples")
else:
    print("\n[2/6] Schnell dataset DISABLED")

sportfashion_ds = None
sportfashion_prompts = []
sportfashion_latents = None
sportfashion_masks = None

if ENABLE_SPORTFASHION:
    print(f"\n[3/6] Loading SportFashion dataset from {SPORTFASHION_REPO}...")
    sportfashion_ds = load_dataset(SPORTFASHION_REPO, split="train")
    sportfashion_prompts = list(sportfashion_ds["text"])
    print(f"βœ“ SportFashion: {len(sportfashion_ds)} samples")
    
    # Precache latents and masks
    sportfashion_latent_cache = os.path.join(LATENT_CACHE_DIR, f"sportfashion_latents_{len(sportfashion_ds)}.pt")
    sportfashion_mask_cache = os.path.join(LATENT_CACHE_DIR, f"sportfashion_masks_{len(sportfashion_ds)}.pt")
    
    if os.path.exists(sportfashion_latent_cache):
        print(f"  Loading cached SportFashion latents...")
        sportfashion_latents = torch.load(sportfashion_latent_cache)
        print(f"  βœ“ Loaded {len(sportfashion_latents)} latents")
        if os.path.exists(sportfashion_mask_cache):
            sportfashion_masks = torch.load(sportfashion_mask_cache)
            print(f"  βœ“ Loaded {len(sportfashion_masks)} masks")
    else:
        print(f"  Encoding SportFashion images to latents (one-time)...")
        VAE_BATCH_SIZE = 64  # A100 can handle large batches
        sportfashion_latents = []
        sportfashion_masks = []
        with torch.no_grad():
            for start_idx in tqdm(range(0, len(sportfashion_ds), VAE_BATCH_SIZE), desc="Encoding latents"):
                end_idx = min(start_idx + VAE_BATCH_SIZE, len(sportfashion_ds))
                batch_images = []
                batch_masks = []
                for i in range(start_idx, end_idx):
                    image = sportfashion_ds[i]["image"]
                    if image.mode != "RGB":
                        image = image.convert("RGB")
                    if image.size != (512, 512):
                        image = image.resize((512, 512), Image.Resampling.LANCZOS)
                    img_tensor = torch.from_numpy(np.array(image)).float() / 255.0
                    img_tensor = img_tensor.permute(2, 0, 1)
                    batch_images.append(img_tensor)
                    # Create mask
                    pixel_mask = create_product_mask(image)
                    mask = downsample_mask_to_latent(pixel_mask, 64, 64)
                    batch_masks.append(mask)
                batch_tensor = torch.stack(batch_images)
                batch_tensor = (batch_tensor * 2.0 - 1.0).to(DEVICE, dtype=DTYPE)
                latents = vae.encode(batch_tensor).latent_dist.sample()
                latents = latents * VAE_SCALE
                sportfashion_latents.append(latents.cpu())
                sportfashion_masks.extend(batch_masks)
        sportfashion_latents = torch.cat(sportfashion_latents, dim=0)
        sportfashion_masks = torch.stack(sportfashion_masks)
        torch.save(sportfashion_latents, sportfashion_latent_cache)
        torch.save(sportfashion_masks, sportfashion_mask_cache)
        print(f"  βœ“ Cached to {sportfashion_latent_cache}")
else:
    print("\n[3/6] SportFashion dataset DISABLED")

synthmocap_ds = None
synthmocap_prompts = []
synthmocap_latents = None
synthmocap_masks = None

if ENABLE_SYNTHMOCAP:
    print(f"\n[4/6] Loading SynthMoCap dataset from {SYNTHMOCAP_REPO}...")
    synthmocap_ds = load_dataset(SYNTHMOCAP_REPO, split="train")
    synthmocap_prompts = list(synthmocap_ds["text"])
    print(f"βœ“ SynthMoCap: {len(synthmocap_ds)} samples")
    
    # Precache latents and masks
    synthmocap_latent_cache = os.path.join(LATENT_CACHE_DIR, f"synthmocap_latents_{len(synthmocap_ds)}.pt")
    synthmocap_mask_cache = os.path.join(LATENT_CACHE_DIR, f"synthmocap_masks_{len(synthmocap_ds)}.pt")
    
    if os.path.exists(synthmocap_latent_cache):
        print(f"  Loading cached SynthMoCap latents...")
        synthmocap_latents = torch.load(synthmocap_latent_cache)
        print(f"  βœ“ Loaded {len(synthmocap_latents)} latents")
        if os.path.exists(synthmocap_mask_cache):
            synthmocap_masks = torch.load(synthmocap_mask_cache)
            print(f"  βœ“ Loaded {len(synthmocap_masks)} masks")
    else:
        print(f"  Encoding SynthMoCap images to latents (one-time)...")
        VAE_BATCH_SIZE = 64  # A100 can handle large batches
        synthmocap_latents = []
        synthmocap_masks = []
        with torch.no_grad():
            for start_idx in tqdm(range(0, len(synthmocap_ds), VAE_BATCH_SIZE), desc="Encoding latents"):
                end_idx = min(start_idx + VAE_BATCH_SIZE, len(synthmocap_ds))
                batch_images = []
                batch_masks = []
                for i in range(start_idx, end_idx):
                    image = synthmocap_ds[i]["image"]
                    conditioning = synthmocap_ds[i]["conditioning_image"]
                    if image.mode != "RGB":
                        image = image.convert("RGB")
                    if image.size != (512, 512):
                        image = image.resize((512, 512), Image.Resampling.LANCZOS)
                    img_tensor = torch.from_numpy(np.array(image)).float() / 255.0
                    img_tensor = img_tensor.permute(2, 0, 1)
                    batch_images.append(img_tensor)
                    # Create mask from conditioning image
                    pixel_mask = create_smpl_mask(conditioning)
                    mask = downsample_mask_to_latent(pixel_mask, 64, 64)
                    batch_masks.append(mask)
                batch_tensor = torch.stack(batch_images)
                batch_tensor = (batch_tensor * 2.0 - 1.0).to(DEVICE, dtype=DTYPE)
                latents = vae.encode(batch_tensor).latent_dist.sample()
                latents = latents * VAE_SCALE
                synthmocap_latents.append(latents.cpu())
                synthmocap_masks.extend(batch_masks)
        synthmocap_latents = torch.cat(synthmocap_latents, dim=0)
        synthmocap_masks = torch.stack(synthmocap_masks)
        torch.save(synthmocap_latents, synthmocap_latent_cache)
        torch.save(synthmocap_masks, synthmocap_mask_cache)
        print(f"  βœ“ Cached to {synthmocap_latent_cache}")
else:
    print("\n[4/6] SynthMoCap dataset DISABLED")

# ============================================================================
# IMAGENET DATASET WITH SMART PROMPT FILTERING
# ============================================================================
imagenet_ds = None
imagenet_prompts = []


def build_imagenet_prompt(item):
    semantic_class = item.get("semantic_class", "object")
    semantic_subclass = item.get("semantic_subclass", "")
    label = item.get("label", "").replace("_", " ")
    base_prompt = item.get("prompt", "")
    synset_id = item.get("synset_id", "")
    
    pred_confidence = item.get("pred_confidence", 0.0)
    top1_correct = item.get("top1_correct", False)
    top5_correct = item.get("top5_correct", False)
    
    confident_but_wrong = (
        pred_confidence >= IMAGENET_CONFIDENCE_THRESHOLD and 
        not top1_correct and 
        not top5_correct
    )
    
    if confident_but_wrong:
        parts = ["subject", semantic_class]
        if semantic_subclass:
            parts.append(semantic_subclass)
        parts.append(base_prompt)
        parts.append(synset_id)
        parts.append("imagenet")
    else:
        parts = ["subject", semantic_class]
        if semantic_subclass:
            parts.append(semantic_subclass)
        if label:
            parts.append(label)
        parts.append(base_prompt)
        parts.append(synset_id)
        parts.append("imagenet")
    
    return ", ".join(p for p in parts if p)


if ENABLE_IMAGENET:
    print(f"\n[5/6] Loading Synthetic ImageNet from {IMAGENET_REPO}...")
    imagenet_ds = load_dataset(IMAGENET_REPO, IMAGENET_SUBSET, split="train")
    print(f"  Raw samples: {len(imagenet_ds)}")
    
    # Use columnar access - MUCH faster than row iteration
    print(f"  Building prompts...")
    semantic_classes = imagenet_ds["semantic_class"]
    semantic_subclasses = imagenet_ds.get("semantic_subclass", [""] * len(imagenet_ds)) if "semantic_subclass" in imagenet_ds.features else [""] * len(imagenet_ds)
    labels = imagenet_ds["label"]
    base_prompts = imagenet_ds["prompt"]
    synset_ids = imagenet_ds["synset_id"]
    pred_confidences = imagenet_ds.get("pred_confidence", [0.0] * len(imagenet_ds)) if "pred_confidence" in imagenet_ds.features else [0.0] * len(imagenet_ds)
    top1_corrects = imagenet_ds.get("top1_correct", [False] * len(imagenet_ds)) if "top1_correct" in imagenet_ds.features else [False] * len(imagenet_ds)
    top5_corrects = imagenet_ds.get("top5_correct", [False] * len(imagenet_ds)) if "top5_correct" in imagenet_ds.features else [False] * len(imagenet_ds)
    
    # Handle case where columns might not exist
    if not isinstance(semantic_subclasses, list):
        semantic_subclasses = list(semantic_subclasses) if semantic_subclasses else [""] * len(imagenet_ds)
    if not isinstance(pred_confidences, list):
        pred_confidences = list(pred_confidences) if pred_confidences else [0.0] * len(imagenet_ds)
    if not isinstance(top1_corrects, list):
        top1_corrects = list(top1_corrects) if top1_corrects else [False] * len(imagenet_ds)
    if not isinstance(top5_corrects, list):
        top5_corrects = list(top5_corrects) if top5_corrects else [False] * len(imagenet_ds)
    
    confident_wrong = 0
    for i in range(len(imagenet_ds)):
        semantic_class = semantic_classes[i] if semantic_classes[i] else "object"
        semantic_subclass = semantic_subclasses[i] if i < len(semantic_subclasses) else ""
        label = labels[i].replace("_", " ") if labels[i] else ""
        base_prompt = base_prompts[i] if base_prompts[i] else ""
        synset_id = synset_ids[i] if synset_ids[i] else ""
        pred_confidence = pred_confidences[i] if i < len(pred_confidences) else 0.0
        top1_correct = top1_corrects[i] if i < len(top1_corrects) else False
        top5_correct = top5_corrects[i] if i < len(top5_corrects) else False
        
        confident_but_wrong = (
            pred_confidence >= IMAGENET_CONFIDENCE_THRESHOLD and 
            not top1_correct and 
            not top5_correct
        )
        
        if confident_but_wrong:
            parts = ["subject", semantic_class]
            if semantic_subclass:
                parts.append(semantic_subclass)
            parts.append(base_prompt)
            parts.append(synset_id)
            parts.append("imagenet")
            confident_wrong += 1
        else:
            parts = ["subject", semantic_class]
            if semantic_subclass:
                parts.append(semantic_subclass)
            if label:
                parts.append(label)
            parts.append(base_prompt)
            parts.append(synset_id)
            parts.append("imagenet")
        
        imagenet_prompts.append(", ".join(p for p in parts if p))
    
    print(f"βœ“ ImageNet: {len(imagenet_ds)} samples")
    print(f"  Confident mispredictions (label removed): {confident_wrong}")
    
    imagenet_latent_cache = os.path.join(LATENT_CACHE_DIR, f"imagenet_latents_{len(imagenet_ds)}.pt")
    if os.path.exists(imagenet_latent_cache):
        print(f"  Loading cached ImageNet latents...")
        imagenet_latents = torch.load(imagenet_latent_cache)
        print(f"  βœ“ Loaded {len(imagenet_latents)} latents")
    else:
        print(f"  Encoding ImageNet images to latents (one-time)...")
        VAE_BATCH_SIZE = 64  # A100 can handle large batches
        imagenet_latents = []
        with torch.no_grad():
            for start_idx in tqdm(range(0, len(imagenet_ds), VAE_BATCH_SIZE), desc="Encoding latents"):
                end_idx = min(start_idx + VAE_BATCH_SIZE, len(imagenet_ds))
                batch_images = []
                for i in range(start_idx, end_idx):
                    image = imagenet_ds[i]["image"]
                    if image.mode != "RGB":
                        image = image.convert("RGB")
                    if image.size != (512, 512):
                        image = image.resize((512, 512), Image.Resampling.LANCZOS)
                    img_tensor = torch.from_numpy(np.array(image)).float() / 255.0
                    img_tensor = img_tensor.permute(2, 0, 1)
                    batch_images.append(img_tensor)
                batch_tensor = torch.stack(batch_images)
                batch_tensor = (batch_tensor * 2.0 - 1.0).to(DEVICE, dtype=DTYPE)
                latents = vae.encode(batch_tensor).latent_dist.sample()
                latents = latents * VAE_SCALE
                imagenet_latents.append(latents.cpu())
        imagenet_latents = torch.cat(imagenet_latents, dim=0)
        torch.save(imagenet_latents, imagenet_latent_cache)
        print(f"  βœ“ Cached to {imagenet_latent_cache}")
else:
    print("\n[5/6] ImageNet dataset DISABLED")
    imagenet_latents = None

# ============================================================================
# OBJECT RELATIONS DATASET WITH SUBJECT PREFIX
# ============================================================================
object_relations_ds = None
object_relations_prompts = []
object_relations_latents = None


def build_object_relations_prompt(item):
    prompt = item.get("prompt", "")
    if random.random() < 0.5:
        return f"subject, object, {prompt}"
    else:
        return f"subject, {prompt}"


if ENABLE_OBJECT_RELATIONS:
    print(f"\n[6/6] Loading Object Relations from {OBJECT_RELATIONS_REPO}...")
    object_relations_ds = load_dataset(OBJECT_RELATIONS_REPO, "schnell_512_1", split="train")
    print(f"  Raw samples: {len(object_relations_ds)}")
    
    # Use columnar access - MUCH faster than row iteration
    print(f"  Building prompts...")
    all_prompts = object_relations_ds["prompt"]  # Get entire column at once
    
    random.seed(42)
    object_relations_prompts = []
    for prompt in all_prompts:
        if random.random() < 0.5:
            object_relations_prompts.append(f"subject, object, {prompt}")
        else:
            object_relations_prompts.append(f"subject, {prompt}")
    random.seed()
    
    subject_object_count = sum(1 for p in object_relations_prompts if p.startswith("subject, object,"))
    subject_only_count = len(object_relations_prompts) - subject_object_count
    print(f"βœ“ Object Relations: {len(object_relations_ds)} samples")
    print(f"  'subject, object, ...' prefix: {subject_object_count}")
    print(f"  'subject, ...' prefix: {subject_only_count}")
    
    object_relations_latent_cache = os.path.join(LATENT_CACHE_DIR, f"object_relations_latents_{len(object_relations_ds)}.pt")
    if os.path.exists(object_relations_latent_cache):
        print(f"  Loading cached Object Relations latents...")
        object_relations_latents = torch.load(object_relations_latent_cache)
        print(f"  βœ“ Loaded {len(object_relations_latents)} latents")
    else:
        print(f"  Encoding Object Relations images to latents (one-time)...")
        VAE_BATCH_SIZE = 64  # A100 can handle large batches
        object_relations_latents = []
        with torch.no_grad():
            for start_idx in tqdm(range(0, len(object_relations_ds), VAE_BATCH_SIZE), desc="Encoding latents"):
                end_idx = min(start_idx + VAE_BATCH_SIZE, len(object_relations_ds))
                batch_images = []
                for i in range(start_idx, end_idx):
                    image = object_relations_ds[i]["image"]
                    if image.mode != "RGB":
                        image = image.convert("RGB")
                    if image.size != (512, 512):
                        image = image.resize((512, 512), Image.Resampling.LANCZOS)
                    img_tensor = torch.from_numpy(np.array(image)).float() / 255.0
                    img_tensor = img_tensor.permute(2, 0, 1)
                    batch_images.append(img_tensor)
                batch_tensor = torch.stack(batch_images)
                batch_tensor = (batch_tensor * 2.0 - 1.0).to(DEVICE, dtype=DTYPE)
                latents = vae.encode(batch_tensor).latent_dist.sample()
                latents = latents * VAE_SCALE
                object_relations_latents.append(latents.cpu())
        object_relations_latents = torch.cat(object_relations_latents, dim=0)
        torch.save(object_relations_latents, object_relations_latent_cache)
        print(f"  βœ“ Cached to {object_relations_latent_cache}")
else:
    print("\n[6/6] Object Relations dataset DISABLED")

# ============================================================================
# ENCODE ALL PROMPTS
# ============================================================================
total_samples = len(portrait_prompts) + len(schnell_prompts) + len(sportfashion_prompts) + len(synthmocap_prompts) + len(imagenet_prompts) + len(object_relations_prompts)
print(f"\nTotal combined samples: {total_samples}")


def load_or_encode(cache_path, prompts, name):
    if not prompts:
        return None, None
    if os.path.exists(cache_path):
        print(f"Loading cached {name} encodings...")
        cached = torch.load(cache_path)
        return cached["t5_embeds"], cached["clip_pooled"]
    else:
        print(f"Encoding {len(prompts)} {name} prompts...")
        t5, clip = encode_prompts_batched(prompts, batch_size=64)
        torch.save({"t5_embeds": t5, "clip_pooled": clip}, cache_path)
        print(f"βœ“ Cached to {cache_path}")
        return t5, clip


portrait_t5, portrait_clip = None, None
schnell_t5, schnell_clip = None, None
sportfashion_t5, sportfashion_clip = None, None
synthmocap_t5, synthmocap_clip = None, None

if portrait_prompts:
    portrait_enc_cache = os.path.join(ENCODING_CACHE_DIR, f"portrait_encodings_{len(portrait_prompts)}.pt")
    portrait_t5, portrait_clip = load_or_encode(portrait_enc_cache, portrait_prompts, "portrait")

if schnell_prompts:
    schnell_enc_cache = os.path.join(ENCODING_CACHE_DIR, f"schnell_encodings_{len(schnell_prompts)}.pt")
    schnell_t5, schnell_clip = load_or_encode(schnell_enc_cache, schnell_prompts, "schnell")

if sportfashion_prompts:
    sportfashion_enc_cache = os.path.join(ENCODING_CACHE_DIR, f"sportfashion_encodings_{len(sportfashion_prompts)}.pt")
    sportfashion_t5, sportfashion_clip = load_or_encode(sportfashion_enc_cache, sportfashion_prompts, "sportfashion")

if synthmocap_prompts:
    synthmocap_enc_cache = os.path.join(ENCODING_CACHE_DIR, f"synthmocap_encodings_{len(synthmocap_prompts)}.pt")
    synthmocap_t5, synthmocap_clip = load_or_encode(synthmocap_enc_cache, synthmocap_prompts, "synthmocap")

imagenet_t5, imagenet_clip = None, None
if imagenet_prompts:
    imagenet_enc_cache = os.path.join(ENCODING_CACHE_DIR, f"imagenet_encodings_{len(imagenet_prompts)}.pt")
    imagenet_t5, imagenet_clip = load_or_encode(imagenet_enc_cache, imagenet_prompts, "imagenet")

object_relations_t5, object_relations_clip = None, None
if object_relations_prompts:
    object_relations_enc_cache = os.path.join(ENCODING_CACHE_DIR, f"object_relations_encodings_{len(object_relations_prompts)}.pt")
    object_relations_t5, object_relations_clip = load_or_encode(object_relations_enc_cache, object_relations_prompts, "object_relations")



# ============================================================================
# EXTRACT/LOAD LUNE AND SOL FEATURES (precached)
# ============================================================================
print("\n" + "=" * 60)
print("Expert Feature Caching (Lune + Sol)")
print("=" * 60)

# Lune caches
schnell_lune_cache = None
portrait_lune_cache = None
sportfashion_lune_cache = None
synthmocap_lune_cache = None
imagenet_lune_cache = None
object_relations_lune_cache = None

# Sol caches
schnell_sol_cache = None
portrait_sol_cache = None
sportfashion_sol_cache = None
synthmocap_sol_cache = None
imagenet_sol_cache = None
object_relations_sol_cache = None

if schnell_prompts:
    if ENABLE_LUNE_DISTILLATION:
        schnell_lune_path = os.path.join(ENCODING_CACHE_DIR, f"schnell_lune_{len(schnell_prompts)}.pt")
        schnell_lune_cache = load_or_extract_lune_features(
            schnell_lune_path, schnell_prompts, "schnell",
            clip_tok, clip_enc, EXPERT_T_BUCKETS
        )
    if ENABLE_SOL_DISTILLATION:
        schnell_sol_path = os.path.join(ENCODING_CACHE_DIR, f"schnell_sol_{len(schnell_prompts)}.pt")
        schnell_sol_cache = load_or_extract_sol_features(
            schnell_sol_path, schnell_prompts, "schnell",
            clip_tok, clip_enc, EXPERT_T_BUCKETS, SOL_SPATIAL_SIZE
        )

if portrait_prompts:
    if ENABLE_LUNE_DISTILLATION:
        portrait_lune_path = os.path.join(ENCODING_CACHE_DIR, f"portrait_lune_{len(portrait_prompts)}.pt")
        portrait_lune_cache = load_or_extract_lune_features(
            portrait_lune_path, portrait_prompts, "portrait",
            clip_tok, clip_enc, EXPERT_T_BUCKETS
        )
    if ENABLE_SOL_DISTILLATION:
        portrait_sol_path = os.path.join(ENCODING_CACHE_DIR, f"portrait_sol_{len(portrait_prompts)}.pt")
        portrait_sol_cache = load_or_extract_sol_features(
            portrait_sol_path, portrait_prompts, "portrait",
            clip_tok, clip_enc, EXPERT_T_BUCKETS, SOL_SPATIAL_SIZE
        )

if sportfashion_prompts:
    if ENABLE_LUNE_DISTILLATION:
        sportfashion_lune_path = os.path.join(ENCODING_CACHE_DIR, f"sportfashion_lune_{len(sportfashion_prompts)}.pt")
        sportfashion_lune_cache = load_or_extract_lune_features(
            sportfashion_lune_path, sportfashion_prompts, "sportfashion",
            clip_tok, clip_enc, EXPERT_T_BUCKETS
        )
    if ENABLE_SOL_DISTILLATION:
        sportfashion_sol_path = os.path.join(ENCODING_CACHE_DIR, f"sportfashion_sol_{len(sportfashion_prompts)}.pt")
        sportfashion_sol_cache = load_or_extract_sol_features(
            sportfashion_sol_path, sportfashion_prompts, "sportfashion",
            clip_tok, clip_enc, EXPERT_T_BUCKETS, SOL_SPATIAL_SIZE
        )

if synthmocap_prompts:
    if ENABLE_LUNE_DISTILLATION:
        synthmocap_lune_path = os.path.join(ENCODING_CACHE_DIR, f"synthmocap_lune_{len(synthmocap_prompts)}.pt")
        synthmocap_lune_cache = load_or_extract_lune_features(
            synthmocap_lune_path, synthmocap_prompts, "synthmocap",
            clip_tok, clip_enc, EXPERT_T_BUCKETS
        )
    if ENABLE_SOL_DISTILLATION:
        synthmocap_sol_path = os.path.join(ENCODING_CACHE_DIR, f"synthmocap_sol_{len(synthmocap_prompts)}.pt")
        synthmocap_sol_cache = load_or_extract_sol_features(
            synthmocap_sol_path, synthmocap_prompts, "synthmocap",
            clip_tok, clip_enc, EXPERT_T_BUCKETS, SOL_SPATIAL_SIZE
        )

if imagenet_prompts:
    if ENABLE_LUNE_DISTILLATION:
        imagenet_lune_path = os.path.join(ENCODING_CACHE_DIR, f"imagenet_lune_{len(imagenet_prompts)}.pt")
        imagenet_lune_cache = load_or_extract_lune_features(
            imagenet_lune_path, imagenet_prompts, "imagenet",
            clip_tok, clip_enc, EXPERT_T_BUCKETS
        )
    if ENABLE_SOL_DISTILLATION:
        imagenet_sol_path = os.path.join(ENCODING_CACHE_DIR, f"imagenet_sol_{len(imagenet_prompts)}.pt")
        imagenet_sol_cache = load_or_extract_sol_features(
            imagenet_sol_path, imagenet_prompts, "imagenet",
            clip_tok, clip_enc, EXPERT_T_BUCKETS, SOL_SPATIAL_SIZE
        )

if object_relations_prompts:
    if ENABLE_LUNE_DISTILLATION:
        object_relations_lune_path = os.path.join(ENCODING_CACHE_DIR, f"object_relations_lune_{len(object_relations_prompts)}.pt")
        object_relations_lune_cache = load_or_extract_lune_features(
            object_relations_lune_path, object_relations_prompts, "object_relations",
            clip_tok, clip_enc, EXPERT_T_BUCKETS
        )
    if ENABLE_SOL_DISTILLATION:
        object_relations_sol_path = os.path.join(ENCODING_CACHE_DIR, f"object_relations_sol_{len(object_relations_prompts)}.pt")
        object_relations_sol_cache = load_or_extract_sol_features(
            object_relations_sol_path, object_relations_prompts, "object_relations",
            clip_tok, clip_enc, EXPERT_T_BUCKETS, SOL_SPATIAL_SIZE
        )


# ============================================================================
# COMBINED DATASET CLASS
# ============================================================================
class CombinedDataset(Dataset):
    """Combined dataset returning sample index for expert feature lookup."""

    def __init__(
            self,
            portrait_ds, portrait_indices, portrait_t5, portrait_clip,
            schnell_ds, schnell_t5, schnell_clip,
            sportfashion_ds, sportfashion_latents, sportfashion_masks, sportfashion_t5, sportfashion_clip,
            synthmocap_ds, synthmocap_latents, synthmocap_masks, synthmocap_t5, synthmocap_clip,
            imagenet_ds, imagenet_latents, imagenet_t5, imagenet_clip,
            object_relations_ds, object_relations_latents, object_relations_t5, object_relations_clip,
            vae, vae_scale, device, dtype,
            compute_masks=True,
    ):
        self.portrait_ds = portrait_ds
        self.portrait_indices = portrait_indices
        self.portrait_t5 = portrait_t5
        self.portrait_clip = portrait_clip

        self.schnell_ds = schnell_ds
        self.schnell_t5 = schnell_t5
        self.schnell_clip = schnell_clip

        self.sportfashion_ds = sportfashion_ds
        self.sportfashion_latents = sportfashion_latents
        self.sportfashion_masks = sportfashion_masks
        self.sportfashion_t5 = sportfashion_t5
        self.sportfashion_clip = sportfashion_clip

        self.synthmocap_ds = synthmocap_ds
        self.synthmocap_latents = synthmocap_latents
        self.synthmocap_masks = synthmocap_masks
        self.synthmocap_t5 = synthmocap_t5
        self.synthmocap_clip = synthmocap_clip

        self.imagenet_ds = imagenet_ds
        self.imagenet_latents = imagenet_latents
        self.imagenet_t5 = imagenet_t5
        self.imagenet_clip = imagenet_clip

        self.object_relations_ds = object_relations_ds
        self.object_relations_latents = object_relations_latents
        self.object_relations_t5 = object_relations_t5
        self.object_relations_clip = object_relations_clip

        self.vae = vae
        self.vae_scale = vae_scale
        self.device = device
        self.dtype = dtype
        self.compute_masks = compute_masks

        self.n_portrait = len(portrait_indices) if portrait_indices else 0
        self.n_schnell = len(schnell_ds) if schnell_ds else 0
        self.n_sportfashion = len(sportfashion_latents) if sportfashion_latents is not None else 0
        self.n_synthmocap = len(synthmocap_latents) if synthmocap_latents is not None else 0
        self.n_imagenet = len(imagenet_latents) if imagenet_latents is not None else 0
        self.n_object_relations = len(object_relations_latents) if object_relations_latents is not None else 0

        self.c1 = self.n_portrait
        self.c2 = self.c1 + self.n_schnell
        self.c3 = self.c2 + self.n_sportfashion
        self.c4 = self.c3 + self.n_synthmocap
        self.c5 = self.c4 + self.n_imagenet
        self.total = self.c5 + self.n_object_relations

    def __len__(self):
        return self.total

    def _get_latent_from_array(self, latent_data):
        if isinstance(latent_data, torch.Tensor):
            return latent_data.to(self.dtype)
        return torch.tensor(np.array(latent_data), dtype=self.dtype)

    def __getitem__(self, idx):
        mask = None

        if idx < self.c1:
            local_idx = idx
            orig_idx = self.portrait_indices[idx]
            item = self.portrait_ds[orig_idx]
            latent = self._get_latent_from_array(item["latent"])
            t5 = self.portrait_t5[idx]
            clip = self.portrait_clip[idx]
            dataset_id = 0

        elif idx < self.c2:
            local_idx = idx - self.c1
            item = self.schnell_ds[local_idx]
            latent = self._get_latent_from_array(item["latent"])
            t5 = self.schnell_t5[local_idx]
            clip = self.schnell_clip[local_idx]
            dataset_id = 1

        elif idx < self.c3:
            local_idx = idx - self.c2
            latent = self.sportfashion_latents[local_idx].to(self.dtype)
            t5 = self.sportfashion_t5[local_idx]
            clip = self.sportfashion_clip[local_idx]
            dataset_id = 2
            if self.compute_masks and self.sportfashion_masks is not None:
                mask = self.sportfashion_masks[local_idx].to(self.dtype)

        elif idx < self.c4:
            local_idx = idx - self.c3
            latent = self.synthmocap_latents[local_idx].to(self.dtype)
            t5 = self.synthmocap_t5[local_idx]
            clip = self.synthmocap_clip[local_idx]
            dataset_id = 3
            if self.compute_masks and self.synthmocap_masks is not None:
                mask = self.synthmocap_masks[local_idx].to(self.dtype)

        elif idx < self.c5:
            local_idx = idx - self.c4
            latent = self.imagenet_latents[local_idx].to(self.dtype)
            t5 = self.imagenet_t5[local_idx]
            clip = self.imagenet_clip[local_idx]
            dataset_id = 4

        else:
            local_idx = idx - self.c5
            latent = self.object_relations_latents[local_idx].to(self.dtype)
            t5 = self.object_relations_t5[local_idx]
            clip = self.object_relations_clip[local_idx]
            dataset_id = 5

        result = {
            "latent": latent,
            "t5_embed": t5.to(self.dtype),
            "clip_pooled": clip.to(self.dtype),
            "sample_idx": idx,
            "local_idx": local_idx,
            "dataset_id": dataset_id,
        }

        if mask is not None:
            result["mask"] = mask.to(self.dtype)

        return result


# ============================================================================
# COLLATE FUNCTION
# ============================================================================
def collate_fn(batch):
    latents = torch.stack([b["latent"] for b in batch])
    t5_embeds = torch.stack([b["t5_embed"] for b in batch])
    clip_pooled = torch.stack([b["clip_pooled"] for b in batch])
    sample_indices = torch.tensor([b["sample_idx"] for b in batch], dtype=torch.long)
    local_indices = torch.tensor([b["local_idx"] for b in batch], dtype=torch.long)
    dataset_ids = torch.tensor([b["dataset_id"] for b in batch], dtype=torch.long)

    masks = None
    if any("mask" in b for b in batch):
        masks = []
        for b in batch:
            if "mask" in b:
                masks.append(b["mask"])
            else:
                masks.append(torch.ones(64, 64, dtype=latents.dtype))
        masks = torch.stack(masks)

    return {
        "latents": latents,
        "t5_embeds": t5_embeds,
        "clip_pooled": clip_pooled,
        "sample_indices": sample_indices,
        "local_indices": local_indices,
        "dataset_ids": dataset_ids,
        "masks": masks,
    }



# ============================================================================
# EXPERT FEATURE LOOKUP (handles multiple datasets, dual experts)
# ============================================================================
def get_lune_features_for_batch(
        local_indices: torch.Tensor,
        dataset_ids: torch.Tensor,
        timesteps: torch.Tensor,
) -> Optional[torch.Tensor]:
    """Get Lune features from the appropriate cache for each sample."""
    caches = [
        portrait_lune_cache, schnell_lune_cache, sportfashion_lune_cache,
        synthmocap_lune_cache, imagenet_lune_cache, object_relations_lune_cache
    ]

    if not any(c is not None for c in caches):
        return None

    B = local_indices.shape[0]
    device = timesteps.device
    features = torch.zeros(B, LUNE_DIM, device=device, dtype=DTYPE)

    for ds_id, cache in enumerate(caches):
        if cache is None:
            continue
        mask = dataset_ids == ds_id
        if not mask.any():
            continue
        ds_local_indices = local_indices[mask]
        ds_timesteps = timesteps[mask]
        ds_features = cache.get_features(ds_local_indices, ds_timesteps)
        features[mask] = ds_features

    return features


def get_sol_features_for_batch(
        local_indices: torch.Tensor,
        dataset_ids: torch.Tensor,
        timesteps: torch.Tensor,
) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor]]:
    """Get Sol features (stats + spatial) from the appropriate cache."""
    caches = [
        portrait_sol_cache, schnell_sol_cache, sportfashion_sol_cache,
        synthmocap_sol_cache, imagenet_sol_cache, object_relations_sol_cache
    ]

    if not any(c is not None for c in caches):
        return None, None

    B = local_indices.shape[0]
    device = timesteps.device
    stats = torch.zeros(B, 3, device=device, dtype=DTYPE)  # 3 stats: locality, entropy, clustering
    spatial = torch.zeros(B, SOL_SPATIAL_SIZE, SOL_SPATIAL_SIZE, device=device, dtype=DTYPE)

    for ds_id, cache in enumerate(caches):
        if cache is None:
            continue
        mask = dataset_ids == ds_id
        if not mask.any():
            continue
        ds_local_indices = local_indices[mask]
        ds_timesteps = timesteps[mask]
        ds_stats, ds_spatial = cache.get_features(ds_local_indices, ds_timesteps)
        stats[mask] = ds_stats[:, :3]  # Drop redundant sparsity (was copy of locality)
        spatial[mask] = ds_spatial

    return stats, spatial


# ============================================================================
# LOSS FUNCTIONS
# ============================================================================
def huber_loss(pred, target, delta=0.1):
    """Huber loss - L2 for small errors, L1 for large."""
    diff = pred - target
    abs_diff = diff.abs()
    quadratic = torch.clamp(abs_diff, max=delta)
    linear = abs_diff - quadratic
    return 0.5 * quadratic ** 2 + delta * linear


def compute_main_loss(pred, target, mask=None, spatial_weights=None, 
                      fg_weight=2.0, bg_weight=0.5, snr_weights=None):
    """Compute main prediction loss with optional spatial weighting."""
    B, N, C = pred.shape
    
    if USE_HUBER_LOSS:
        loss_per_elem = huber_loss(pred, target, HUBER_DELTA)
    else:
        loss_per_elem = (pred - target) ** 2
    
    # Apply spatial weights from Sol if enabled
    if spatial_weights is not None and USE_SPATIAL_WEIGHTING:
        H = W = int(math.sqrt(N))
        # Upsample spatial weights from 8x8 to HxW
        spatial_upsampled = F.interpolate(
            spatial_weights.unsqueeze(1),  # [B, 1, 8, 8]
            size=(H, W),
            mode='bilinear',
            align_corners=False
        ).squeeze(1)  # [B, H, W]
        # Normalize so mean = 1
        spatial_upsampled = spatial_upsampled / (spatial_upsampled.mean(dim=[1, 2], keepdim=True) + 1e-6)
        spatial_flat = spatial_upsampled.view(B, N, 1)
        loss_per_elem = loss_per_elem * spatial_flat
    
    # Apply foreground/background mask
    if mask is not None:
        H = W = int(math.sqrt(N))
        mask_flat = mask.view(B, H * W, 1).to(pred.device)
        weights = mask_flat * fg_weight + (1 - mask_flat) * bg_weight
        loss_per_elem = loss_per_elem * weights
    
    loss_per_sample = loss_per_elem.mean(dim=[1, 2])
    
    if snr_weights is not None:
        loss_per_sample = loss_per_sample * snr_weights
    
    return loss_per_sample.mean()


def compute_lune_loss(pred, target, mode="cosine"):
    """Compute Lune distillation loss."""
    if mode == "cosine":
        # Cosine similarity loss (1 - cos_sim)
        pred_norm = F.normalize(pred, dim=-1)
        target_norm = F.normalize(target, dim=-1)
        return (1 - (pred_norm * target_norm).sum(dim=-1)).mean()
    elif mode == "huber":
        return huber_loss(pred, target, HUBER_DELTA).mean()
    elif mode == "soft":
        # Soft L2 with temperature
        return F.mse_loss(pred / 10.0, target / 10.0)
    else:  # hard
        return F.mse_loss(pred, target)


def compute_sol_loss(pred_stats, pred_spatial, target_stats, target_spatial):
    """Compute Sol distillation loss (stats + spatial)."""
    stats_loss = F.mse_loss(pred_stats, target_stats)
    spatial_loss = F.mse_loss(pred_spatial, target_spatial)
    return stats_loss + spatial_loss


# ============================================================================
# WEIGHT SCHEDULES
# ============================================================================
def get_lune_weight(step):
    if step < LUNE_WARMUP_STEPS:
        return LUNE_LOSS_WEIGHT * (step / LUNE_WARMUP_STEPS)
    return LUNE_LOSS_WEIGHT


def get_sol_weight(step):
    if step < SOL_WARMUP_STEPS:
        return SOL_LOSS_WEIGHT * (step / SOL_WARMUP_STEPS)
    return SOL_LOSS_WEIGHT


# ============================================================================
# CREATE DATASET
# ============================================================================
print("\nCreating combined dataset...")
combined_ds = CombinedDataset(
    portrait_ds, portrait_indices, portrait_t5, portrait_clip,
    schnell_ds, schnell_t5, schnell_clip,
    sportfashion_ds, sportfashion_latents, sportfashion_masks, sportfashion_t5, sportfashion_clip,
    synthmocap_ds, synthmocap_latents, synthmocap_masks, synthmocap_t5, synthmocap_clip,
    imagenet_ds, imagenet_latents, imagenet_t5, imagenet_clip,
    object_relations_ds, object_relations_latents, object_relations_t5, object_relations_clip,
    vae, VAE_SCALE, DEVICE, DTYPE,
    compute_masks=USE_MASKED_LOSS,
)
print(f"βœ“ Combined dataset: {len(combined_ds)} samples")
print(f"  - Portraits (3x):    {combined_ds.n_portrait:,}")
print(f"  - Schnell teacher:   {combined_ds.n_schnell:,}")
print(f"  - SportFashion:      {combined_ds.n_sportfashion:,}")
print(f"  - SynthMoCap:        {combined_ds.n_synthmocap:,}")
print(f"  - ImageNet:          {combined_ds.n_imagenet:,}")
print(f"  - Object Relations:  {combined_ds.n_object_relations:,}")
print(f"  - Lune distillation: {ENABLE_LUNE_DISTILLATION}")
print(f"  - Sol distillation:  {ENABLE_SOL_DISTILLATION}")

# ============================================================================
# DATALOADER
# ============================================================================
loader = DataLoader(
    combined_ds,
    batch_size=BATCH_SIZE,
    shuffle=True,
    num_workers=8,
    pin_memory=True,
    collate_fn=collate_fn,
    drop_last=True,
)
print(f"βœ“ DataLoader: {len(loader)} batches/epoch")



# ============================================================================
# SAMPLING FUNCTION
# ============================================================================
@torch.inference_mode()
def generate_samples(model, prompts, num_steps=28, guidance_scale=5.0, H=64, W=64,
                     use_ema=True, seed=None,
                     negative_prompt="blurry, distorted, low quality"):
    """Generate samples during training with proper CFG support."""
    was_training = model.training
    model.eval()

    if seed is not None:
        torch.manual_seed(seed)

    model_ref = model._orig_mod if hasattr(model, '_orig_mod') else model

    if use_ema and 'ema' in globals() and ema is not None:
        ema.apply_shadow_for_eval(model)

    B = len(prompts)
    C = 16

    t5_list, clip_list = [], []
    for p in prompts:
        t5, clip = encode_prompt(p)
        t5_list.append(t5)
        clip_list.append(clip)
    t5_cond = torch.stack(t5_list).to(DTYPE)
    clip_cond = torch.stack(clip_list).to(DTYPE)

    if guidance_scale > 1.0:
        t5_uncond, clip_uncond = encode_prompt(negative_prompt)
        t5_uncond = t5_uncond.expand(B, -1, -1)
        clip_uncond = clip_uncond.expand(B, -1)
    else:
        t5_uncond, clip_uncond = None, None

    x = torch.randn(B, H * W, C, device=DEVICE, dtype=DTYPE)
    img_ids = model_ref.create_img_ids(B, H, W, DEVICE)

    t_linear = torch.linspace(0, 1, num_steps + 1, device=DEVICE, dtype=DTYPE)
    timesteps = flux_shift(t_linear, s=SHIFT)

    for i in range(num_steps):
        t_curr = timesteps[i]
        t_next = timesteps[i + 1]
        dt = t_next - t_curr

        t_batch = t_curr.expand(B).to(DTYPE)

        with torch.autocast("cuda", dtype=DTYPE):
            v_cond = model_ref(
                hidden_states=x,
                encoder_hidden_states=t5_cond,
                pooled_projections=clip_cond,
                timestep=t_batch,
                img_ids=img_ids,
            )
            if isinstance(v_cond, tuple):
                v_cond = v_cond[0]

            if guidance_scale > 1.0 and t5_uncond is not None:
                v_uncond = model_ref(
                    hidden_states=x,
                    encoder_hidden_states=t5_uncond,
                    pooled_projections=clip_uncond,
                    timestep=t_batch,
                    img_ids=img_ids,
                )
                if isinstance(v_uncond, tuple):
                    v_uncond = v_uncond[0]
                v = v_uncond + guidance_scale * (v_cond - v_uncond)
            else:
                v = v_cond

        x = x + v * dt

    latents = x.reshape(B, H, W, C).permute(0, 3, 1, 2)
    latents = latents / VAE_SCALE

    with torch.autocast("cuda", dtype=DTYPE):
        images = vae.decode(latents.to(vae.dtype)).sample
    images = (images / 2 + 0.5).clamp(0, 1)

    if use_ema and 'ema' in globals() and ema is not None:
        ema.restore(model)

    if was_training:
        model.train()
    return images


def save_samples(images, prompts, step, output_dir):
    from torchvision.utils import save_image
    os.makedirs(output_dir, exist_ok=True)
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    grid_path = os.path.join(output_dir, f"samples_step_{step}.png")
    save_image(images, grid_path, nrow=2, padding=2)
    try:
        api.upload_file(
            path_or_fileobj=grid_path,
            path_in_repo=f"samples/{timestamp}_step_{step}.png",
            repo_id=HF_REPO,
        )
    except:
        pass


# ============================================================================
# CHECKPOINT FUNCTIONS
# ============================================================================
def save_checkpoint(model, optimizer, scheduler, step, epoch, loss, path, ema=None):
    os.makedirs(os.path.dirname(path) if os.path.dirname(path) else ".", exist_ok=True)
    if hasattr(model, '_orig_mod'):
        state_dict = model._orig_mod.state_dict()
    else:
        state_dict = model.state_dict()
    state_dict = {k: v.to(DTYPE) if v.is_floating_point() else v for k, v in state_dict.items()}
    weights_path = path.replace(".pt", ".safetensors")
    save_file(state_dict, weights_path)
    if ema is not None:
        ema_weights = {k: v.to(DTYPE) if v.is_floating_point() else v for k, v in ema.shadow.items()}
        ema_weights_path = path.replace(".pt", "_ema.safetensors")
        save_file(ema_weights, ema_weights_path)
    state = {
        "step": step,
        "epoch": epoch,
        "loss": loss,
        "optimizer": optimizer.state_dict(),
        "scheduler": scheduler.state_dict(),
    }
    if ema is not None:
        state["ema_decay"] = ema.decay
    torch.save(state, path)
    print(f"  βœ“ Saved checkpoint: step {step}")
    return weights_path


def upload_checkpoint(weights_path, step):
    try:
        api.upload_file(
            path_or_fileobj=weights_path,
            path_in_repo=f"checkpoints/step_{step}.safetensors",
            repo_id=HF_REPO,
        )
        ema_path = weights_path.replace(".safetensors", "_ema.safetensors")
        if os.path.exists(ema_path):
            api.upload_file(
                path_or_fileobj=ema_path,
                path_in_repo=f"checkpoints/step_{step}_ema.safetensors",
                repo_id=HF_REPO,
            )
        print(f"  βœ“ Uploaded checkpoint to {HF_REPO}")
    except Exception as e:
        print(f"  ⚠ Upload failed: {e}")


def upload_logs():
    try:
        for root, dirs, files in os.walk(LOG_DIR):
            for f in files:
                if f.startswith("events.out.tfevents"):
                    local_path = os.path.join(root, f)
                    rel_path = os.path.relpath(local_path, LOG_DIR)
                    repo_path = f"logs/{rel_path}"
                    api.upload_file(
                        path_or_fileobj=local_path,
                        path_in_repo=repo_path,
                        repo_id=HF_REPO,
                    )
        print(f"  βœ“ Uploaded logs to {HF_REPO}")
    except Exception as e:
        print(f"  ⚠ Log upload failed: {e}")



# ============================================================================
# WEIGHT UPGRADE LOADING (v3 -> v4.1)
# ============================================================================


def load_with_weight_upgrade(model, state_dict):
    """Load state dict with bidirectional remapping support.
    
    Handles:
    - v3 checkpoint (expert_predictor) -> v4 model (lune_predictor)  
    - v4 checkpoint (lune_predictor) -> model with (expert_predictor)
    """
    model_state = model.state_dict()
    
    # Detect which naming the MODEL uses
    model_has_expert = any('expert_predictor' in k for k in model_state.keys())
    model_has_lune = any('lune_predictor' in k for k in model_state.keys())
    
    # Detect which naming the CHECKPOINT uses
    ckpt_has_expert = any('expert_predictor' in k for k in state_dict.keys())
    ckpt_has_lune = any('lune_predictor' in k for k in state_dict.keys())
    
    # Build remap based on mismatch
    REMAP = {}
    if model_has_expert and ckpt_has_lune:
        # Checkpoint has lune_predictor, model expects expert_predictor
        print("  Remapping: lune_predictor -> expert_predictor")
        REMAP = {'lune_predictor.': 'expert_predictor.'}
    elif model_has_lune and ckpt_has_expert:
        # Checkpoint has expert_predictor, model expects lune_predictor
        print("  Remapping: expert_predictor -> lune_predictor")
        REMAP = {'expert_predictor.': 'lune_predictor.'}

    # New modules that may not exist in checkpoint
    NEW_WEIGHT_PATTERNS = [
        'expert_predictor.',
        'lune_predictor.',
        'sol_prior.',
        't5_vec_proj.',
        '.norm_q.weight',
        '.norm_k.weight',
        '.norm_added_q.weight',
        '.norm_added_k.weight',
    ]

    # Deprecated keys
    DEPRECATED_PATTERNS = [
        'guidance_in.',
        '.sin_basis',
    ]

    loaded_keys = []
    missing_keys = []
    unexpected_keys = []
    initialized_keys = []
    remapped_keys = []

    # First pass: remap checkpoint keys to match model
    remapped_state = {}
    for k, v in state_dict.items():
        new_k = k
        for old_pat, new_pat in REMAP.items():
            if old_pat in k:
                new_k = k.replace(old_pat, new_pat)
                remapped_keys.append(f"{k} -> {new_k}")
                break
        remapped_state[new_k] = v

    # Second pass: load matching weights
    for key, v in remapped_state.items():
        if key in model_state:
            if v.shape == model_state[key].shape:
                model_state[key] = v
                loaded_keys.append(key)
            else:
                print(f"  ⚠ Shape mismatch for {key}: checkpoint {v.shape} vs model {model_state[key].shape}")
                unexpected_keys.append(key)
        else:
            is_deprecated = any(pat in key for pat in DEPRECATED_PATTERNS)
            if is_deprecated:
                unexpected_keys.append(key)
            else:
                print(f"  ⚠ Unexpected key (not in model): {key}")
                unexpected_keys.append(key)

    # Third pass: handle missing keys
    for key in model_state.keys():
        if key not in loaded_keys:
            is_new = any(pat in key for pat in NEW_WEIGHT_PATTERNS)
            if is_new:
                initialized_keys.append(key)
            else:
                missing_keys.append(key)
                print(f"  ⚠ Missing key (not in checkpoint): {key}")

    model.load_state_dict(model_state, strict=False)

    # Report
    if remapped_keys:
        print(f"  βœ“ Remapped v3->v4: {len(remapped_keys)} keys")
        for rk in remapped_keys[:5]:
            print(f"      {rk}")
        if len(remapped_keys) > 5:
            print(f"      ... and {len(remapped_keys) - 5} more")

    if initialized_keys:
        modules = set()
        for k in initialized_keys:
            parts = k.split('.')
            if len(parts) >= 2:
                modules.add(parts[0])
        print(f"  βœ“ Initialized new modules (fresh): {sorted(modules)}")

    if unexpected_keys:
        deprecated = [k for k in unexpected_keys if any(p in k for p in DEPRECATED_PATTERNS)]
        if deprecated:
            print(f"  βœ“ Ignored deprecated keys: {len(deprecated)}")

    return missing_keys, unexpected_keys


def load_checkpoint(model, optimizer, scheduler, target):
    """Load checkpoint with weight upgrade support for v4.1."""
    start_step = 0
    start_epoch = 0
    ema_state = None

    if target == "none":
        print("Starting fresh (no checkpoint)")
        return start_step, start_epoch, None

    ckpt_path = None
    weights_path = None
    ema_weights_path = None

    if target == "latest":
        if os.path.exists(CHECKPOINT_DIR):
            ckpts = [f for f in os.listdir(CHECKPOINT_DIR) if f.startswith("step_") and f.endswith(".pt")]
            if ckpts:
                steps = [int(f.split("_")[1].split(".")[0]) for f in ckpts]
                latest_step = max(steps)
                ckpt_path = os.path.join(CHECKPOINT_DIR, f"step_{latest_step}.pt")
                weights_path = ckpt_path.replace(".pt", ".safetensors")
                ema_weights_path = ckpt_path.replace(".pt", "_ema.safetensors")

    elif target == "hub" or target.startswith("hub:"):
        try:
            from huggingface_hub import list_repo_files

            if target.startswith("hub:"):
                path_or_name = target.split(":", 1)[1]
                
                # Check if it's a full path (contains /) or just a step name
                if "/" in path_or_name:
                    # Full path like checkpoint_runs/v4_init/lailah_401434_v4_init
                    weights_path = hf_hub_download(HF_REPO, f"{path_or_name}.safetensors")
                    try:
                        ema_weights_path = hf_hub_download(HF_REPO, f"{path_or_name}_ema.safetensors")
                        print(f"  Found EMA weights on hub")
                    except:
                        ema_weights_path = None
                        print(f"  No EMA weights on hub (will start fresh)")
                    print(f"Downloaded {path_or_name} from hub")
                else:
                    # Simple step name like step_401434
                    step_name = path_or_name
                    weights_path = hf_hub_download(HF_REPO, f"checkpoints/{step_name}.safetensors")
                    try:
                        ema_weights_path = hf_hub_download(HF_REPO, f"checkpoints/{step_name}_ema.safetensors")
                        print(f"  Found EMA weights on hub")
                    except:
                        ema_weights_path = None
                        print(f"  No EMA weights on hub (will start fresh)")
                    start_step = int(step_name.split("_")[1]) if "_" in step_name else 0
                    print(f"Downloaded {step_name} from hub")
            else:
                files = list_repo_files(HF_REPO)
                ckpts = [f for f in files if
                         f.startswith("checkpoints/step_") and f.endswith(".safetensors") and "_ema" not in f]
                if ckpts:
                    steps = [int(f.split("_")[1].split(".")[0]) for f in ckpts]
                    latest = max(steps)
                    weights_path = hf_hub_download(HF_REPO, f"checkpoints/step_{latest}.safetensors")
                    try:
                        ema_weights_path = hf_hub_download(HF_REPO, f"checkpoints/step_{latest}_ema.safetensors")
                        print(f"  Found EMA weights on hub")
                    except:
                        ema_weights_path = None
                        print(f"  No EMA weights on hub (will start fresh)")
                    start_step = latest
                    print(f"Downloaded step_{latest} from hub")
        except Exception as e:
            print(f"Could not download from hub: {e}")
            return start_step, start_epoch, None

    elif target == "best":
        ckpt_path = os.path.join(CHECKPOINT_DIR, "best.pt")
        weights_path = ckpt_path.replace(".pt", ".safetensors")
        ema_weights_path = ckpt_path.replace(".pt", "_ema.safetensors")

    elif os.path.exists(target):
        if target.endswith(".safetensors"):
            weights_path = target
            ckpt_path = target.replace(".safetensors", ".pt")
            ema_weights_path = target.replace(".safetensors", "_ema.safetensors")
        else:
            ckpt_path = target
            weights_path = target.replace(".pt", ".safetensors")
            ema_weights_path = target.replace(".pt", "_ema.safetensors")

    # Load main model weights
    if weights_path and os.path.exists(weights_path):
        print(f"Loading weights from {weights_path}")
        state_dict = load_file(weights_path)
        state_dict = {k: v.to(DTYPE) if v.is_floating_point() else v for k, v in state_dict.items()}

        model_ref = model._orig_mod if hasattr(model, '_orig_mod') else model

        if ALLOW_WEIGHT_UPGRADE:
            missing, unexpected = load_with_weight_upgrade(model_ref, state_dict)
            if missing:
                print(f"  ⚠ {len(missing)} truly missing parameters")
        else:
            model_ref.load_state_dict(state_dict, strict=True)

        print(f"βœ“ Loaded model weights")

        # Load EMA weights
        if ema_weights_path and os.path.exists(ema_weights_path):
            ema_state = load_file(ema_weights_path)
            ema_state = {k: v.to(DTYPE) if v.is_floating_point() else v for k, v in ema_state.items()}
            print(f"βœ“ Loaded EMA weights ({len(ema_state)} params)")
        else:
            print(f"  β„Ή No EMA weights found (will initialize fresh)")
    else:
        print(f"  ⚠ Weights file not found: {weights_path}")
        print(f"  Starting with fresh model")
        return start_step, start_epoch, None

    # Load optimizer/scheduler state
    if ckpt_path and os.path.exists(ckpt_path):
        state = torch.load(ckpt_path, map_location="cpu")
        start_step = state.get("step", 0)
        start_epoch = state.get("epoch", 0)
        try:
            optimizer.load_state_dict(state["optimizer"])
            scheduler.load_state_dict(state["scheduler"])
            print(f"βœ“ Loaded optimizer/scheduler state")
        except Exception as e:
            print(f"  ⚠ Could not load optimizer state: {e}")
            print(f"  Will use fresh optimizer")
        print(f"Resuming from step {start_step}, epoch {start_epoch}")

    return start_step, start_epoch, ema_state



# ============================================================================
# CREATE MODEL (v4.1 with dual experts)
# ============================================================================
print("\nCreating TinyFlux v4.1 model with Lune + Sol...")

# Import model - expects model_v4.py to define TinyFluxConfig and TinyFlux
# If running as a notebook cell, ensure model_v4.py cell was run first
# If running as a script, uncomment the import below:
# from model_v4 import TinyFluxConfig, TinyFlux

config = TinyFluxConfig(
    hidden_size=512,
    num_attention_heads=4,
    attention_head_dim=128,
    num_double_layers=15,
    num_single_layers=25,
    
    # Lune expert (trajectory guidance)
    use_lune_expert=ENABLE_LUNE_DISTILLATION,
    lune_expert_dim=LUNE_DIM,
    lune_hidden_dim=LUNE_HIDDEN_DIM,
    lune_dropout=LUNE_DROPOUT,
    
    # Sol prior (structural guidance)
    use_sol_prior=ENABLE_SOL_DISTILLATION,
    sol_spatial_size=SOL_SPATIAL_SIZE,
    sol_hidden_dim=SOL_HIDDEN_DIM,
    sol_geometric_weight=SOL_GEOMETRIC_WEIGHT,
    
    # Other settings
    use_t5_vec=True,
    lune_distill_mode=LUNE_DISTILL_MODE,
    use_huber_loss=USE_HUBER_LOSS,
    huber_delta=HUBER_DELTA,
    guidance_embeds=False,
)
model = TinyFluxDeep(config).to(device=DEVICE, dtype=DTYPE)

total_params = sum(p.numel() for p in model.parameters())
print(f"Total parameters: {total_params:,}")

if hasattr(model, 'lune_predictor') and model.lune_predictor is not None:
    lune_params = sum(p.numel() for p in model.lune_predictor.parameters())
    print(f"Lune predictor parameters: {lune_params:,}")

if hasattr(model, 'sol_prior') and model.sol_prior is not None:
    sol_params = sum(p.numel() for p in model.sol_prior.parameters())
    print(f"Sol prior parameters: {sol_params:,}")

trainable_params = [p for p in model.parameters() if p.requires_grad]
print(f"Trainable parameters: {sum(p.numel() for p in trainable_params):,}")

# ============================================================================
# OPTIMIZER
# ============================================================================
opt = torch.optim.AdamW(trainable_params, lr=LR, betas=(0.9, 0.99), weight_decay=0.01, fused=True)

total_steps = len(loader) * EPOCHS // GRAD_ACCUM
warmup = min(1000, total_steps // 10)


def lr_fn(step):
    if step < warmup:
        return step / warmup
    return 0.5 * (1 + math.cos(math.pi * (step - warmup) / (total_steps - warmup)))


sched = torch.optim.lr_scheduler.LambdaLR(opt, lr_fn)

# ============================================================================
# LOAD CHECKPOINT
# ============================================================================
start_step, start_epoch, ema_state = load_checkpoint(model, opt, sched, LOAD_TARGET)

if RESUME_STEP is not None:
    start_step = RESUME_STEP

# ============================================================================
# COMPILE
# ============================================================================
model = torch.compile(model, mode="default")

# ============================================================================
# EMA
# ============================================================================
print("Initializing EMA...")
ema = EMA(model, decay=EMA_DECAY)
if ema_state is not None:
    # Remap v3 EMA keys to v4
    remapped_ema = {}
    for k, v in ema_state.items():
        #if k in V3_TO_V4_REMAP:
        #    remapped_ema[V3_TO_V4_REMAP[k]] = v
        #else:
            remapped_ema[k] = v
    ema.load_shadow(remapped_ema, model=model)
    
    # Sync new modules from model
    has_lune_in_ema = any('lune_predictor' in k for k in ema_state.keys())
    has_sol_in_ema = any('sol_prior' in k for k in ema_state.keys())
    
    if ENABLE_LUNE_DISTILLATION and not has_lune_in_ema:
        # Check if expert_predictor was in the v3 checkpoint (remapped to lune_predictor)
        has_expert_in_v3 = any('expert_predictor' in k for k in ema_state.keys())
        if not has_expert_in_v3:
            ema.sync_from_model(model, pattern='lune_predictor')
            print("  βœ“ Force-synced lune_predictor (new weights)")
        else:
            print("  βœ“ lune_predictor loaded from remapped v3 checkpoint")
    
    if ENABLE_SOL_DISTILLATION and not has_sol_in_ema:
        ema.sync_from_model(model, pattern='sol_prior')
        print("  βœ“ Force-synced sol_prior (new weights)")
else:
    print("  Starting fresh EMA from current weights")

# ============================================================================
# TENSORBOARD
# ============================================================================
run_name = f"run_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
writer = SummaryWriter(os.path.join(LOG_DIR, run_name))

SAMPLE_PROMPTS = [
    "a photo of a cat sitting on a windowsill",
    "a portrait of a woman with red hair",
    "a black backpack on white background",
    "a person standing in a t-pose",
]


# ============================================================================
# TRAINING LOOP
# ============================================================================
print(f"\n{'=' * 60}")
print(f"Training TinyFlux v4.1 with Dual Expert Distillation")
print(f"{'=' * 60}")
print(f"Total: {len(combined_ds):,} samples")
print(f"Epochs: {EPOCHS}, Steps/epoch: {len(loader)}, Total: {total_steps}")
print(f"Batch: {BATCH_SIZE} x {GRAD_ACCUM} = {BATCH_SIZE * GRAD_ACCUM}")
print(f"Lune distillation: {ENABLE_LUNE_DISTILLATION}")
if ENABLE_LUNE_DISTILLATION:
    print(f"  - Mode: {LUNE_DISTILL_MODE}")
    print(f"  - Weight: {LUNE_LOSS_WEIGHT} (warmup: {LUNE_WARMUP_STEPS} steps)")
print(f"Sol distillation: {ENABLE_SOL_DISTILLATION}")
if ENABLE_SOL_DISTILLATION:
    print(f"  - Weight: {SOL_LOSS_WEIGHT} (warmup: {SOL_WARMUP_STEPS} steps)")
print(f"Huber loss: {USE_HUBER_LOSS} (delta={HUBER_DELTA})")
print(f"Spatial weighting: {USE_SPATIAL_WEIGHTING}")
print(f"Resume: step {start_step}, epoch {start_epoch}")

model.train()
step = start_step
best = float("inf")

for ep in range(start_epoch, EPOCHS):
    ep_loss = 0
    ep_main_loss = 0
    ep_lune_loss = 0
    ep_sol_loss = 0
    ep_batches = 0
    pbar = tqdm(loader, desc=f"E{ep + 1}")

    for i, batch in enumerate(pbar):
        latents = batch["latents"].to(DEVICE, non_blocking=True)
        t5 = batch["t5_embeds"].to(DEVICE, non_blocking=True)
        clip = batch["clip_pooled"].to(DEVICE, non_blocking=True)
        local_indices = batch["local_indices"]
        dataset_ids = batch["dataset_ids"]
        masks = batch["masks"]

        if masks is not None:
            masks = masks.to(DEVICE, non_blocking=True)

        B, C, H, W = latents.shape
        data = latents.permute(0, 2, 3, 1).reshape(B, H * W, C)
        noise = torch.randn_like(data)

        if TEXT_DROPOUT > 0:
            t5, clip, _ = apply_text_dropout(t5, clip, TEXT_DROPOUT)

        t = torch.sigmoid(torch.randn(B, device=DEVICE))
        t = flux_shift(t, s=SHIFT).to(DTYPE).clamp(1e-4, 1 - 1e-4)

        t_expanded = t.view(B, 1, 1)
        x_t = (1 - t_expanded) * noise + t_expanded * data
        v_target = data - noise

        img_ids = TinyFluxDeep.create_img_ids(B, H, W, DEVICE)

        # Get expert features from CACHE
        lune_features = None
        sol_stats = None
        sol_spatial = None
        
        if ENABLE_LUNE_DISTILLATION:
            lune_features = get_lune_features_for_batch(local_indices, dataset_ids, t)
            if lune_features is not None and random.random() < LUNE_DROPOUT:
                lune_features = None
        
        if ENABLE_SOL_DISTILLATION:
            sol_stats, sol_spatial = get_sol_features_for_batch(local_indices, dataset_ids, t)

        with torch.autocast("cuda", dtype=DTYPE):
            result = model(
                hidden_states=x_t,
                encoder_hidden_states=t5,
                pooled_projections=clip,
                timestep=t,
                img_ids=img_ids,
                lune_features=lune_features,
                sol_stats=sol_stats,
                sol_spatial=sol_spatial,
                return_expert_pred=True,
            )
            
            if isinstance(result, tuple):
                v_pred, expert_info = result
            else:
                v_pred = result
                expert_info = {}

        # Compute losses
        snr_weights = min_snr_weight(t)

        # Main loss with optional spatial weighting from Sol
        spatial_weights = sol_spatial if USE_SPATIAL_WEIGHTING else None
        main_loss = compute_main_loss(
            v_pred, v_target,
            mask=masks if USE_MASKED_LOSS else None,
            spatial_weights=spatial_weights,
            fg_weight=FG_LOSS_WEIGHT,
            bg_weight=BG_LOSS_WEIGHT,
            snr_weights=snr_weights
        )

        # Lune distillation loss
        lune_loss = torch.tensor(0.0, device=DEVICE)
        if lune_features is not None and expert_info.get('lune') is not None:
            lune_loss = compute_lune_loss(
                expert_info['lune']['expert_pred'], lune_features, mode=LUNE_DISTILL_MODE
            )

        # Sol distillation loss
        sol_loss = torch.tensor(0.0, device=DEVICE)
        if sol_stats is not None and expert_info.get('sol') is not None:
          sol_loss = compute_sol_loss(
              expert_info['sol']['pred_stats'], expert_info['sol']['pred_spatial'],
              sol_stats, sol_spatial
          )
        # Total loss with warmup weights
        total_loss = main_loss
        total_loss = total_loss + get_lune_weight(step) * lune_loss
        total_loss = total_loss + get_sol_weight(step) * sol_loss

        loss = total_loss / GRAD_ACCUM
        loss.backward()

        if (i + 1) % GRAD_ACCUM == 0:
            grad_norm = torch.nn.utils.clip_grad_norm_(trainable_params, 1.0)
            opt.step()
            sched.step()
            opt.zero_grad(set_to_none=True)

            ema.update(model)
            step += 1

            if step % LOG_EVERY == 0:
                writer.add_scalar("train/loss", total_loss.item(), step)
                writer.add_scalar("train/main_loss", main_loss.item(), step)
                if ENABLE_LUNE_DISTILLATION:
                    writer.add_scalar("train/lune_loss", lune_loss.item(), step)
                    writer.add_scalar("train/lune_weight", get_lune_weight(step), step)
                if ENABLE_SOL_DISTILLATION:
                    writer.add_scalar("train/sol_loss", sol_loss.item(), step)
                    writer.add_scalar("train/sol_weight", get_sol_weight(step), step)
                writer.add_scalar("train/lr", sched.get_last_lr()[0], step)
                writer.add_scalar("train/grad_norm", grad_norm.item(), step)

            if step % SAMPLE_EVERY == 0:
                print(f"\n  Generating samples at step {step}...")
                images = generate_samples(
                    model, SAMPLE_PROMPTS,
                    num_steps=28,
                    guidance_scale=5.0,
                    use_ema=True,
                    negative_prompt="blurry, distorted, low quality, deformed",
                )
                save_samples(images, SAMPLE_PROMPTS, step, SAMPLE_DIR)

            if step % SAVE_EVERY == 0:
                ckpt_path = os.path.join(CHECKPOINT_DIR, f"step_{step}.pt")
                weights_path = save_checkpoint(model, opt, sched, step, ep, total_loss.item(), ckpt_path, ema=ema)
                if step % UPLOAD_EVERY == 0:
                    upload_checkpoint(weights_path, step)
                if step % LOG_UPLOAD_EVERY == 0:
                    writer.flush()
                    upload_logs()

        ep_loss += total_loss.item()
        ep_main_loss += main_loss.item()
        ep_lune_loss += lune_loss.item()
        ep_sol_loss += sol_loss.item()
        ep_batches += 1

        pbar.set_postfix(
            loss=f"{total_loss.item():.4f}",
            main=f"{main_loss.item():.4f}",
            lune=f"{lune_loss.item():.4f}" if ENABLE_LUNE_DISTILLATION else "-",
            sol=f"{sol_loss.item():.4f}" if ENABLE_SOL_DISTILLATION else "-",
            step=step
        )

    avg = ep_loss / max(ep_batches, 1)
    avg_main = ep_main_loss / max(ep_batches, 1)
    avg_lune = ep_lune_loss / max(ep_batches, 1)
    avg_sol = ep_sol_loss / max(ep_batches, 1)

    print(f"Epoch {ep + 1} - total: {avg:.4f}, main: {avg_main:.4f}, lune: {avg_lune:.4f}, sol: {avg_sol:.4f}")

    if avg < best:
        best = avg
        weights_path = save_checkpoint(model, opt, sched, step, ep, avg, os.path.join(CHECKPOINT_DIR, "best.pt"),
                                       ema=ema)
        try:
            api.upload_file(path_or_fileobj=weights_path, path_in_repo="model.safetensors", repo_id=HF_REPO)
        except:
            pass

print(f"\nβœ“ Training complete! Best loss: {best:.4f}")
writer.close()