File size: 46,251 Bytes
aae97e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
# ============================================================================
# TinyFlux-Deep Training Cell - Combined Dataset
# ============================================================================
# Datasets:
#   - FFHQ portraits (40k × 3 prompts = ~120k)
#   - flux-schnell-teacher-latents (train_simple_512 + train_512 + train_2_512 = ~40k)
#   - SportFashion_512x512 (54.6k) - with background mask
#   - SynthMoCap_smpl_512 (106k) - with SMPL body mask
# Total: ~320k samples
#
# All encoded with flan-t5-base (768 dim)
# Masked loss for foreground-focused training on product/body datasets
#
# USAGE: Run model.py cell first, then this cell
# This converts tiny-flux-deep into tiny-flux-deep-v2, which is a different variant.
# WARNING: It will impact performance and weights, so be aware.
# ============================================================================

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader, Dataset
from datasets import load_dataset, concatenate_datasets
from transformers import T5EncoderModel, T5Tokenizer, CLIPTextModel, CLIPTokenizer
from huggingface_hub import HfApi, hf_hub_download
from safetensors.torch import save_file, load_file
from torch.utils.tensorboard import SummaryWriter
from tqdm.auto import tqdm
import numpy as np
import math
import json
import random
from typing import Tuple, Optional, Dict, List
import os
from datetime import datetime
from PIL import Image

# ============================================================================
# CUDA OPTIMIZATIONS
# ============================================================================
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
torch.backends.cudnn.benchmark = True
torch.set_float32_matmul_precision('high')

import warnings
warnings.filterwarnings('ignore', message='.*TF32.*')

# ============================================================================
# CONFIG
# ============================================================================
BATCH_SIZE = 16
GRAD_ACCUM = 2
LR = 3e-4
EPOCHS = 20
MAX_SEQ = 128
SHIFT = 3.0
DEVICE = "cuda"
DTYPE = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16

ALLOW_WEIGHT_UPGRADE = True  # Set to False to require exact weight match

# HuggingFace Hub
HF_REPO = "AbstractPhil/tiny-flux-deep"
SAVE_EVERY = 625
UPLOAD_EVERY = 625
SAMPLE_EVERY = 312
LOG_EVERY = 10
LOG_UPLOAD_EVERY = 625

# Checkpoint loading
LOAD_TARGET = "latest"  # "hub", "latest", "best", "none"
RESUME_STEP = None

# ============================================================================
# DATASET CONFIG - Enable/disable datasets for this run
# ============================================================================
ENABLE_PORTRAIT = False
ENABLE_SCHNELL = True
ENABLE_SPORTFASHION = False  # Disabled for disk space
ENABLE_SYNTHMOCAP = False    # Disabled for disk space



# Dataset repos
PORTRAIT_REPO = "AbstractPhil/ffhq_flux_latents_repaired"
PORTRAIT_NUM_SHARDS = 11
SCHNELL_REPO = "AbstractPhil/flux-schnell-teacher-latents"
SCHNELL_CONFIGS = ["train_simple_512"]  # Add "train_512", "train_2_512" as disk allows
SPORTFASHION_REPO = "Pianokill/SportFashion_512x512"
SYNTHMOCAP_REPO = "toyxyz/SynthMoCap_smpl_512"

# Masked loss config
# Weight foreground higher than background
FG_LOSS_WEIGHT = 2.0  # Foreground multiplier
BG_LOSS_WEIGHT = 0.5  # Background multiplier
USE_MASKED_LOSS = False

# Min-SNR weighting for flow matching
MIN_SNR_GAMMA = 5.0

# Paths
CHECKPOINT_DIR = "./tiny_flux_deep_checkpoints"
LOG_DIR = "./tiny_flux_deep_logs"
SAMPLE_DIR = "./tiny_flux_deep_samples"
ENCODING_CACHE_DIR = "./encoding_cache"
LATENT_CACHE_DIR = "./latent_cache"

os.makedirs(CHECKPOINT_DIR, exist_ok=True)
os.makedirs(LOG_DIR, exist_ok=True)
os.makedirs(SAMPLE_DIR, exist_ok=True)
os.makedirs(ENCODING_CACHE_DIR, exist_ok=True)
os.makedirs(LATENT_CACHE_DIR, exist_ok=True)

# ============================================================================
# REGULARIZATION CONFIG
# ============================================================================
TEXT_DROPOUT = 0.1
GUIDANCE_DROPOUT = 0.1
EMA_DECAY = 0.9999

# ============================================================================
# EMA
# ============================================================================
class EMA:
    def __init__(self, model, decay=0.9999):
        self.decay = decay
        self.shadow = {}
        self._backup = {}
        if hasattr(model, '_orig_mod'):
            state = model._orig_mod.state_dict()
        else:
            state = model.state_dict()
        for k, v in state.items():
            self.shadow[k] = v.clone().detach()
    
    @torch.no_grad()
    def update(self, model):
        if hasattr(model, '_orig_mod'):
            state = model._orig_mod.state_dict()
        else:
            state = model.state_dict()
        for k, v in state.items():
            if k in self.shadow:
                self.shadow[k].lerp_(v.to(self.shadow[k].dtype), 1 - self.decay)
    
    def apply_shadow_for_eval(self, model):
        if hasattr(model, '_orig_mod'):
            self._backup = {k: v.clone() for k, v in model._orig_mod.state_dict().items()}
            model._orig_mod.load_state_dict(self.shadow)
        else:
            self._backup = {k: v.clone() for k, v in model.state_dict().items()}
            model.load_state_dict(self.shadow)
    
    def restore(self, model):
        if hasattr(model, '_orig_mod'):
            model._orig_mod.load_state_dict(self._backup)
        else:
            model.load_state_dict(self._backup)
        self._backup = {}
    
    def state_dict(self):
        return {'shadow': self.shadow, 'decay': self.decay}
    
    def load_state_dict(self, state):
        self.shadow = {k: v.clone() for k, v in state['shadow'].items()}
        self.decay = state.get('decay', self.decay)

# ============================================================================
# REGULARIZATION
# ============================================================================
def apply_text_dropout(t5_embeds, clip_pooled, dropout_prob=0.1):
    B = t5_embeds.shape[0]
    mask = torch.rand(B, device=t5_embeds.device) < dropout_prob
    t5_embeds = t5_embeds.clone()
    clip_pooled = clip_pooled.clone()
    t5_embeds[mask] = 0
    clip_pooled[mask] = 0
    return t5_embeds, clip_pooled, mask

# ============================================================================
# MASKING UTILITIES
# ============================================================================
def detect_background_color(image: Image.Image, sample_size: int = 100) -> Tuple[int, int, int]:
    """Detect dominant background color by sampling corners."""
    img = np.array(image)
    if len(img.shape) == 2:
        img = np.stack([img] * 3, axis=-1)
    
    h, w = img.shape[:2]
    corners = [
        img[:sample_size, :sample_size],       # Top-left
        img[:sample_size, -sample_size:],      # Top-right
        img[-sample_size:, :sample_size],      # Bottom-left
        img[-sample_size:, -sample_size:],     # Bottom-right
    ]
    
    # Compute median color across corners
    corner_pixels = np.concatenate([c.reshape(-1, 3) for c in corners], axis=0)
    bg_color = np.median(corner_pixels, axis=0).astype(np.uint8)
    return tuple(bg_color)


def create_product_mask(image: Image.Image, threshold: int = 30) -> np.ndarray:
    """Create foreground mask for product images (non-background pixels)."""
    img = np.array(image).astype(np.float32)
    if len(img.shape) == 2:
        img = np.stack([img] * 3, axis=-1)
    
    bg_color = detect_background_color(image)
    bg_color = np.array(bg_color, dtype=np.float32)
    
    # Distance from background color
    diff = np.sqrt(np.sum((img - bg_color) ** 2, axis=-1))
    mask = (diff > threshold).astype(np.float32)
    
    return mask


def create_smpl_mask(conditioning_image: Image.Image, threshold: int = 20) -> np.ndarray:
    """Create body mask from SMPL conditioning render.
    
    SynthMoCap uses green/teal background. Body is rendered as mesh.
    Non-green pixels = body.
    """
    img = np.array(conditioning_image).astype(np.float32)
    if len(img.shape) == 2:
        return (img > threshold).astype(np.float32)
    
    # Green background detection (high G, low R and B relative to G)
    r, g, b = img[:, :, 0], img[:, :, 1], img[:, :, 2]
    
    # Background is typically green/teal
    # Body pixels have different color distribution
    is_background = (g > r + 20) & (g > b + 20)
    mask = (~is_background).astype(np.float32)
    
    return mask


def downsample_mask_to_latent(mask: np.ndarray, latent_h: int = 64, latent_w: int = 64) -> torch.Tensor:
    """Downsample pixel mask to latent space dimensions."""
    # Use area averaging for downsampling
    mask_pil = Image.fromarray((mask * 255).astype(np.uint8))
    mask_pil = mask_pil.resize((latent_w, latent_h), Image.Resampling.BILINEAR)
    mask_latent = np.array(mask_pil).astype(np.float32) / 255.0
    return torch.from_numpy(mask_latent)

# ============================================================================
# HF HUB SETUP
# ============================================================================
print("Setting up HuggingFace Hub...")
api = HfApi()

# ============================================================================
# FLOW MATCHING HELPERS
# ============================================================================
def flux_shift(t, s=SHIFT):
    return s * t / (1 + (s - 1) * t)

def min_snr_weight(t, gamma=MIN_SNR_GAMMA):
    """Min-SNR weighting for flow matching to balance loss across timesteps."""
    snr = (t / (1 - t).clamp(min=1e-5)).pow(2)
    return torch.clamp(snr, max=gamma) / snr.clamp(min=1e-5)

# ============================================================================
# LOAD TEXT ENCODERS
# ============================================================================
print("Loading text encoders...")
t5_tok = T5Tokenizer.from_pretrained("google/flan-t5-base")
t5_enc = T5EncoderModel.from_pretrained("google/flan-t5-base", torch_dtype=DTYPE).to(DEVICE).eval()
for p in t5_enc.parameters():
    p.requires_grad = False

clip_tok = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
clip_enc = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=DTYPE).to(DEVICE).eval()
for p in clip_enc.parameters():
    p.requires_grad = False
print("✓ Text encoders loaded")

# ============================================================================
# LOAD VAE
# ============================================================================
print("Loading VAE...")
from diffusers import AutoencoderKL
vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=DTYPE).to(DEVICE).eval()
for p in vae.parameters():
    p.requires_grad = False
VAE_SCALE = vae.config.scaling_factor
print(f"✓ VAE loaded (scale={VAE_SCALE})")

# ============================================================================
# ENCODING FUNCTIONS
# ============================================================================
@torch.no_grad()
def encode_prompt(prompt: str) -> Tuple[torch.Tensor, torch.Tensor]:
    t5_inputs = t5_tok(prompt, return_tensors="pt", padding="max_length", 
                       max_length=MAX_SEQ, truncation=True).to(DEVICE)
    t5_out = t5_enc(**t5_inputs).last_hidden_state
    
    clip_inputs = clip_tok(prompt, return_tensors="pt", padding="max_length",
                           max_length=77, truncation=True).to(DEVICE)
    clip_out = clip_enc(**clip_inputs).pooler_output
    
    return t5_out.squeeze(0), clip_out.squeeze(0)

@torch.no_grad()
def encode_prompts_batched(prompts: List[str], batch_size: int = 64) -> Tuple[torch.Tensor, torch.Tensor]:
    all_t5 = []
    all_clip = []
    
    for i in tqdm(range(0, len(prompts), batch_size), desc="Encoding", leave=False):
        batch = prompts[i:i+batch_size]
        
        t5_inputs = t5_tok(batch, return_tensors="pt", padding="max_length",
                          max_length=MAX_SEQ, truncation=True).to(DEVICE)
        t5_out = t5_enc(**t5_inputs).last_hidden_state
        all_t5.append(t5_out.cpu())
        
        clip_inputs = clip_tok(batch, return_tensors="pt", padding="max_length",
                              max_length=77, truncation=True).to(DEVICE)
        clip_out = clip_enc(**clip_inputs).pooler_output
        all_clip.append(clip_out.cpu())
    
    return torch.cat(all_t5, dim=0), torch.cat(all_clip, dim=0)

@torch.no_grad()
def encode_image_to_latent(image: Image.Image) -> torch.Tensor:
    """Encode PIL image to VAE latent."""
    if image.mode != "RGB":
        image = image.convert("RGB")
    
    # Resize to 512x512 if needed
    if image.size != (512, 512):
        image = image.resize((512, 512), Image.Resampling.LANCZOS)
    
    # To tensor and normalize
    img_tensor = torch.from_numpy(np.array(image)).float() / 255.0
    img_tensor = img_tensor.permute(2, 0, 1).unsqueeze(0)  # [1, 3, H, W]
    img_tensor = (img_tensor * 2.0 - 1.0).to(DEVICE, dtype=DTYPE)
    
    # Encode
    latent = vae.encode(img_tensor).latent_dist.sample()
    latent = latent * VAE_SCALE
    
    return latent.squeeze(0).cpu()  # [16, 64, 64]

# ============================================================================
# LOAD DATASETS
# ============================================================================

# --- 1. Portrait Dataset (FFHQ) ---
portrait_ds = None
portrait_indices = []
portrait_prompts = []

if ENABLE_PORTRAIT:
    print(f"\n[1/4] Loading portrait dataset from {PORTRAIT_REPO}...")
    portrait_shards = []
    for i in range(PORTRAIT_NUM_SHARDS):
        split_name = f"train_{i:02d}"
        print(f"  Loading {split_name}...")
        shard = load_dataset(PORTRAIT_REPO, split=split_name)
        portrait_shards.append(shard)
    portrait_ds = concatenate_datasets(portrait_shards)
    print(f"✓ Portrait: {len(portrait_ds)} base samples")

    # Extract triplicated prompts - batch read columns then iterate
    print("  Extracting prompts (columnar)...")

    # Batch read all three columns at once (fast Arrow read)
    florence_list = list(portrait_ds["text_florence"])
    llava_list = list(portrait_ds["text_llava"])
    blip_list = list(portrait_ds["text_blip"])

    # Build from Python lists (instant)
    for i, (f, l, b) in enumerate(zip(florence_list, llava_list, blip_list)):
        if f and f.strip():
            portrait_indices.append(i)
            portrait_prompts.append(f)
        if l and l.strip():
            portrait_indices.append(i)
            portrait_prompts.append(l)
        if b and b.strip():
            portrait_indices.append(i)
            portrait_prompts.append(b)
    print(f"  Expanded: {len(portrait_prompts)} samples (3 prompts/image)")
else:
    print("\n[1/4] Portrait dataset DISABLED")

# --- 2. Schnell Teacher Dataset ---
schnell_ds = None
schnell_prompts = []

if ENABLE_SCHNELL:
    print(f"\n[2/4] Loading schnell teacher dataset from {SCHNELL_REPO}...")
    schnell_datasets = []
    for config in SCHNELL_CONFIGS:
        print(f"  Loading {config}...")
        ds = load_dataset(SCHNELL_REPO, config, split="train")
        schnell_datasets.append(ds)
        print(f"    {len(ds)} samples")
    schnell_ds = concatenate_datasets(schnell_datasets)
    schnell_prompts = list(schnell_ds["prompt"])
    print(f"✓ Schnell: {len(schnell_ds)} samples")
else:
    print("\n[2/4] Schnell dataset DISABLED")

# --- 3. SportFashion Dataset ---
sportfashion_ds = None
sportfashion_prompts = []

if ENABLE_SPORTFASHION:
    print(f"\n[3/4] Loading SportFashion dataset from {SPORTFASHION_REPO}...")
    sportfashion_ds = load_dataset(SPORTFASHION_REPO, split="train")
    sportfashion_prompts = list(sportfashion_ds["text"])
    print(f"✓ SportFashion: {len(sportfashion_ds)} samples")
else:
    print("\n[3/4] SportFashion dataset DISABLED")

# --- 4. SynthMoCap Dataset ---
synthmocap_ds = None
synthmocap_prompts = []

if ENABLE_SYNTHMOCAP:
    print(f"\n[4/4] Loading SynthMoCap dataset from {SYNTHMOCAP_REPO}...")
    synthmocap_ds = load_dataset(SYNTHMOCAP_REPO, split="train")
    synthmocap_prompts = list(synthmocap_ds["text"])
    print(f"✓ SynthMoCap: {len(synthmocap_ds)} samples")
else:
    print("\n[4/4] SynthMoCap dataset DISABLED")

# ============================================================================
# ENCODE ALL PROMPTS
# ============================================================================
total_samples = len(portrait_prompts) + len(schnell_prompts) + len(sportfashion_prompts) + len(synthmocap_prompts)
print(f"\nTotal combined samples: {total_samples}")

def load_or_encode(cache_path, prompts, name):
    if not prompts:
        return None, None
    if os.path.exists(cache_path):
        print(f"Loading cached {name} encodings...")
        cached = torch.load(cache_path)
        return cached["t5_embeds"], cached["clip_pooled"]
    else:
        print(f"Encoding {len(prompts)} {name} prompts...")
        t5, clip = encode_prompts_batched(prompts, batch_size=64)
        torch.save({"t5_embeds": t5, "clip_pooled": clip}, cache_path)
        print(f"✓ Cached to {cache_path}")
        return t5, clip

# Cache paths and encoding
portrait_t5, portrait_clip = None, None
schnell_t5, schnell_clip = None, None
sportfashion_t5, sportfashion_clip = None, None
synthmocap_t5, synthmocap_clip = None, None

if portrait_prompts:
    portrait_enc_cache = os.path.join(ENCODING_CACHE_DIR, f"portrait_encodings_{len(portrait_prompts)}.pt")
    portrait_t5, portrait_clip = load_or_encode(portrait_enc_cache, portrait_prompts, "portrait")

if schnell_prompts:
    schnell_enc_cache = os.path.join(ENCODING_CACHE_DIR, f"schnell_encodings_{len(schnell_prompts)}.pt")
    schnell_t5, schnell_clip = load_or_encode(schnell_enc_cache, schnell_prompts, "schnell")

if sportfashion_prompts:
    sportfashion_enc_cache = os.path.join(ENCODING_CACHE_DIR, f"sportfashion_encodings_{len(sportfashion_prompts)}.pt")
    sportfashion_t5, sportfashion_clip = load_or_encode(sportfashion_enc_cache, sportfashion_prompts, "sportfashion")

if synthmocap_prompts:
    synthmocap_enc_cache = os.path.join(ENCODING_CACHE_DIR, f"synthmocap_encodings_{len(synthmocap_prompts)}.pt")
    synthmocap_t5, synthmocap_clip = load_or_encode(synthmocap_enc_cache, synthmocap_prompts, "synthmocap")

# ============================================================================
# COMBINED DATASET CLASS WITH MASK SUPPORT
# ============================================================================
class CombinedDataset(Dataset):
    """Combined dataset with mask support for weighted loss."""
    
    def __init__(
        self,
        portrait_ds, portrait_indices, portrait_t5, portrait_clip,
        schnell_ds, schnell_t5, schnell_clip,
        sportfashion_ds, sportfashion_t5, sportfashion_clip,
        synthmocap_ds, synthmocap_t5, synthmocap_clip,
        vae, vae_scale, device, dtype,
        compute_masks=True
    ):
        self.portrait_ds = portrait_ds
        self.portrait_indices = portrait_indices
        self.portrait_t5 = portrait_t5
        self.portrait_clip = portrait_clip
        
        self.schnell_ds = schnell_ds
        self.schnell_t5 = schnell_t5
        self.schnell_clip = schnell_clip
        
        self.sportfashion_ds = sportfashion_ds
        self.sportfashion_t5 = sportfashion_t5
        self.sportfashion_clip = sportfashion_clip
        
        self.synthmocap_ds = synthmocap_ds
        self.synthmocap_t5 = synthmocap_t5
        self.synthmocap_clip = synthmocap_clip
        
        self.vae = vae
        self.vae_scale = vae_scale
        self.device = device
        self.dtype = dtype
        self.compute_masks = compute_masks
        
        # Dataset sizes (0 if disabled)
        self.n_portrait = len(portrait_indices) if portrait_indices else 0
        self.n_schnell = len(schnell_ds) if schnell_ds else 0
        self.n_sportfashion = len(sportfashion_ds) if sportfashion_ds else 0
        self.n_synthmocap = len(synthmocap_ds) if synthmocap_ds else 0
        
        # Cumulative indices for fast lookup
        self.c1 = self.n_portrait
        self.c2 = self.c1 + self.n_schnell
        self.c3 = self.c2 + self.n_sportfashion
        self.total = self.c3 + self.n_synthmocap
        
    def __len__(self):
        return self.total
    
    def _get_latent_from_array(self, latent_data):
        """Convert latent data to tensor."""
        if isinstance(latent_data, torch.Tensor):
            return latent_data.to(self.dtype)
        return torch.tensor(np.array(latent_data), dtype=self.dtype)
    
    @torch.no_grad()
    def _encode_image(self, image):
        """Encode PIL image to VAE latent."""
        if image.mode != "RGB":
            image = image.convert("RGB")
        if image.size != (512, 512):
            image = image.resize((512, 512), Image.Resampling.LANCZOS)
        
        img_tensor = torch.from_numpy(np.array(image)).float() / 255.0
        img_tensor = img_tensor.permute(2, 0, 1).unsqueeze(0)
        img_tensor = (img_tensor * 2.0 - 1.0).to(self.device, dtype=self.dtype)
        
        latent = self.vae.encode(img_tensor).latent_dist.sample()
        latent = latent * self.vae_scale
        return latent.squeeze(0).cpu()
    
    def __getitem__(self, idx):
        mask = None  # Default: no mask (uniform loss)
        
        if idx < self.c1:
            # Portrait sample (has pre-computed latent, no mask needed)
            orig_idx = self.portrait_indices[idx]
            item = self.portrait_ds[orig_idx]
            latent = self._get_latent_from_array(item["latent"])
            t5 = self.portrait_t5[idx]
            clip = self.portrait_clip[idx]
            
        elif idx < self.c2:
            # Schnell sample (has pre-computed latent, no mask needed)
            schnell_idx = idx - self.c1
            item = self.schnell_ds[schnell_idx]
            latent = self._get_latent_from_array(item["latent"])
            t5 = self.schnell_t5[schnell_idx]
            clip = self.schnell_clip[schnell_idx]
            
        elif idx < self.c3:
            # SportFashion (needs VAE encoding + product mask)
            sf_idx = idx - self.c2
            item = self.sportfashion_ds[sf_idx]
            image = item["image"]
            
            latent = self._encode_image(image)
            t5 = self.sportfashion_t5[sf_idx]
            clip = self.sportfashion_clip[sf_idx]
            
            if self.compute_masks:
                pixel_mask = create_product_mask(image)
                mask = downsample_mask_to_latent(pixel_mask, 64, 64)
            
        else:
            # SynthMoCap (needs VAE encoding + SMPL body mask)
            sm_idx = idx - self.c3
            item = self.synthmocap_ds[sm_idx]
            image = item["image"]
            conditioning = item["conditioning_image"]
            
            latent = self._encode_image(image)
            t5 = self.synthmocap_t5[sm_idx]
            clip = self.synthmocap_clip[sm_idx]
            
            if self.compute_masks:
                pixel_mask = create_smpl_mask(conditioning)
                mask = downsample_mask_to_latent(pixel_mask, 64, 64)
        
        result = {
            "latent": latent,
            "t5_embed": t5.to(self.dtype),
            "clip_pooled": clip.to(self.dtype),
        }
        
        if mask is not None:
            result["mask"] = mask.to(self.dtype)
        
        return result

# ============================================================================
# COLLATE FUNCTION
# ============================================================================
def collate_fn(batch):
    latents = torch.stack([b["latent"] for b in batch])
    t5_embeds = torch.stack([b["t5_embed"] for b in batch])
    clip_pooled = torch.stack([b["clip_pooled"] for b in batch])
    
    # Handle masks (some samples may not have masks)
    masks = None
    if any("mask" in b for b in batch):
        masks = []
        for b in batch:
            if "mask" in b:
                masks.append(b["mask"])
            else:
                # No mask = uniform weight (all 1s)
                masks.append(torch.ones(64, 64, dtype=latents.dtype))
        masks = torch.stack(masks)
    
    return {
        "latents": latents,
        "t5_embeds": t5_embeds,
        "clip_pooled": clip_pooled,
        "masks": masks,
    }

# ============================================================================
# MASKED LOSS FUNCTION
# ============================================================================
def masked_mse_loss(pred, target, mask=None, fg_weight=2.0, bg_weight=0.5, snr_weights=None):
    """
    Compute MSE loss with optional foreground/background weighting and min-SNR.
    
    Args:
        pred: [B, H*W, C] predicted velocity
        target: [B, H*W, C] target velocity
        mask: [B, H, W] foreground mask (1=foreground, 0=background) or None
        fg_weight: Weight for foreground pixels
        bg_weight: Weight for background pixels
        snr_weights: [B] min-SNR weights per sample or None
    
    Returns:
        Scalar loss value
    """
    B, N, C = pred.shape
    
    if mask is None:
        # No spatial mask - compute per-sample loss
        loss_per_sample = ((pred - target) ** 2).mean(dim=[1, 2])  # [B]
    else:
        H = W = int(math.sqrt(N))
        mask_flat = mask.view(B, H * W, 1).to(pred.device)
        sq_error = (pred - target) ** 2
        weights = mask_flat * fg_weight + (1 - mask_flat) * bg_weight
        weighted_error = sq_error * weights
        loss_per_sample = weighted_error.mean(dim=[1, 2])  # [B]
    
    # Apply min-SNR weighting if provided
    if snr_weights is not None:
        loss_per_sample = loss_per_sample * snr_weights
    
    return loss_per_sample.mean()

# ============================================================================
# CREATE DATASET
# ============================================================================
print("\nCreating combined dataset...")
combined_ds = CombinedDataset(
    portrait_ds, portrait_indices, portrait_t5, portrait_clip,
    schnell_ds, schnell_t5, schnell_clip,
    sportfashion_ds, sportfashion_t5, sportfashion_clip,
    synthmocap_ds, synthmocap_t5, synthmocap_clip,
    vae, VAE_SCALE, DEVICE, DTYPE,
    compute_masks=USE_MASKED_LOSS
)
print(f"✓ Combined dataset: {len(combined_ds)} samples")
print(f"  - Portraits (3x):    {combined_ds.n_portrait:,}")
print(f"  - Schnell teacher:   {combined_ds.n_schnell:,}")
print(f"  - SportFashion:      {combined_ds.n_sportfashion:,}")
print(f"  - SynthMoCap:        {combined_ds.n_synthmocap:,}")

# ============================================================================
# DATALOADER
# ============================================================================
loader = DataLoader(
    combined_ds,
    batch_size=BATCH_SIZE,
    shuffle=True,
    num_workers=8,
    pin_memory=True,
    collate_fn=collate_fn,
    drop_last=True,
)
print(f"✓ DataLoader: {len(loader)} batches/epoch")

# ============================================================================
# SAMPLING FUNCTION
# ============================================================================
@torch.inference_mode()
def generate_samples(model, prompts, num_steps=28, guidance_scale=3.5, H=64, W=64, use_ema=True):
    was_training = model.training
    model.eval()
    
    if use_ema and 'ema' in globals() and ema is not None:
        ema.apply_shadow_for_eval(model)
    
    B = len(prompts)
    C = 16

    t5_list, clip_list = [], []
    for p in prompts:
        t5, clip = encode_prompt(p)
        t5_list.append(t5)
        clip_list.append(clip)
    t5_embeds = torch.stack(t5_list).to(DTYPE)
    clip_pooleds = torch.stack(clip_list).to(DTYPE)

    x = torch.randn(B, H * W, C, device=DEVICE, dtype=DTYPE)
    img_ids = TinyFluxDeep.create_img_ids(B, H, W, DEVICE)

    t_linear = torch.linspace(0, 1, num_steps + 1, device=DEVICE, dtype=DTYPE)
    timesteps = flux_shift(t_linear, s=SHIFT)

    for i in range(num_steps):
        t_curr = timesteps[i]
        t_next = timesteps[i + 1]
        dt = t_next - t_curr

        t_batch = t_curr.expand(B).to(DTYPE)
        guidance = torch.full((B,), guidance_scale, device=DEVICE, dtype=DTYPE)

        with torch.autocast("cuda", dtype=DTYPE):
            v_cond = model(
                hidden_states=x,
                encoder_hidden_states=t5_embeds,
                pooled_projections=clip_pooleds,
                timestep=t_batch,
                img_ids=img_ids,
                guidance=guidance,
            )
        x = x + v_cond * dt

    latents = x.reshape(B, H, W, C).permute(0, 3, 1, 2)
    latents = latents / VAE_SCALE
    
    with torch.autocast("cuda", dtype=DTYPE):
        images = vae.decode(latents.to(vae.dtype)).sample
    images = (images / 2 + 0.5).clamp(0, 1)

    if use_ema and 'ema' in globals() and ema is not None:
        ema.restore(model)
    
    if was_training:
        model.train()
    return images

def save_samples(images, prompts, step, output_dir):
    from torchvision.utils import save_image
    os.makedirs(output_dir, exist_ok=True)
    
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    grid_path = os.path.join(output_dir, f"samples_step_{step}.png")
    save_image(images, grid_path, nrow=2, padding=2)
    
    try:
        api.upload_file(
            path_or_fileobj=grid_path,
            path_in_repo=f"samples/{timestamp}_step_{step}.png",
            repo_id=HF_REPO,
        )
    except:
        pass


# ============================================================================
# CHECKPOINT LOADING WITH WEIGHT UPGRADE SUPPORT
# ============================================================================
# Add this config flag near your other CONFIG section:
#
# ALLOW_WEIGHT_UPGRADE = True  # Allow loading old checkpoints into new model
# ============================================================================

def load_checkpoint(model, optimizer, scheduler, target):
    """
    Load checkpoint with optional weight upgrade support.
    
    When ALLOW_WEIGHT_UPGRADE=True:
      - Missing Q/K norm weights are initialized to ones (identity transform)
      - Unexpected keys (e.g., old sin_basis caches) are ignored
      - Model behavior is identical to old weights at load time
    
    When ALLOW_WEIGHT_UPGRADE=False:
      - Requires exact weight match (strict=True)
    """
    start_step = 0
    start_epoch = 0
    
    if target == "none":
        print("Starting fresh (no checkpoint)")
        return start_step, start_epoch
    
    ckpt_path = None
    weights_path = None
    
    if target == "latest":
        if os.path.exists(CHECKPOINT_DIR):
            ckpts = [f for f in os.listdir(CHECKPOINT_DIR) if f.startswith("step_") and f.endswith(".pt")]
            if ckpts:
                steps = [int(f.split("_")[1].split(".")[0]) for f in ckpts]
                latest_step = max(steps)
                ckpt_path = os.path.join(CHECKPOINT_DIR, f"step_{latest_step}.pt")
                weights_path = ckpt_path.replace(".pt", ".safetensors")
    elif target == "hub" or target.startswith("hub:"):
        try:
            from huggingface_hub import list_repo_files
            
            if target.startswith("hub:"):
                step_name = target.split(":")[1]
                weights_path = hf_hub_download(HF_REPO, f"checkpoints/{step_name}.safetensors")
                start_step = int(step_name.split("_")[1]) if "_" in step_name else 0
                print(f"Downloaded {step_name} from hub")
            else:
                files = list_repo_files(HF_REPO)
                ckpts = [f for f in files if f.startswith("checkpoints/step_") and f.endswith(".safetensors") and "_ema" not in f]
                if ckpts:
                    steps = [int(f.split("_")[1].split(".")[0]) for f in ckpts]
                    latest = max(steps)
                    weights_path = hf_hub_download(HF_REPO, f"checkpoints/step_{latest}.safetensors")
                    start_step = latest
                    print(f"Downloaded step_{latest} from hub")
        except Exception as e:
            print(f"Could not download from hub: {e}")
            return start_step, start_epoch
    elif target == "best":
        ckpt_path = os.path.join(CHECKPOINT_DIR, "best.pt")
        weights_path = ckpt_path.replace(".pt", ".safetensors")
    elif os.path.exists(target):
        # Direct path provided
        if target.endswith(".safetensors"):
            weights_path = target
            ckpt_path = target.replace(".safetensors", ".pt")
        else:
            ckpt_path = target
            weights_path = target.replace(".pt", ".safetensors")
    
    if weights_path and os.path.exists(weights_path):
        print(f"Loading weights from {weights_path}")
        state_dict = load_file(weights_path)
        state_dict = {k: v.to(DTYPE) if v.is_floating_point() else v for k, v in state_dict.items()}
        
        # Get model reference (handle torch.compile wrapper)
        model_ref = model._orig_mod if hasattr(model, '_orig_mod') else model
        
        if ALLOW_WEIGHT_UPGRADE:
            # Flexible loading with weight upgrade
            missing, unexpected = load_with_weight_upgrade(model_ref, state_dict)
            
            if missing:
                print(f"  ℹ Initialized {len(missing)} new parameters (identity)")
            if unexpected:
                print(f"  ℹ Ignored {len(unexpected)} deprecated parameters")
        else:
            # Strict loading - must match exactly
            model_ref.load_state_dict(state_dict, strict=True)
        
        print(f"✓ Loaded model weights")
    
    if ckpt_path and os.path.exists(ckpt_path):
        state = torch.load(ckpt_path, map_location="cpu")
        start_step = state.get("step", 0)
        start_epoch = state.get("epoch", 0)
        try:
            optimizer.load_state_dict(state["optimizer"])
            scheduler.load_state_dict(state["scheduler"])
            print(f"✓ Loaded optimizer/scheduler state")
        except:
            print("  âš  Could not load optimizer state (will use fresh optimizer)")
        print(f"Resuming from step {start_step}, epoch {start_epoch}")
    
    return start_step, start_epoch


def load_with_weight_upgrade(model, state_dict):
    """
    Load state dict with automatic handling of:
      - Missing Q/K norm weights → initialize to ones (identity)
      - Unexpected keys → ignore (e.g., old sin_basis caches)
    
    Returns:
        (missing_keys, unexpected_keys) - lists of handled keys
    """
    model_state = model.state_dict()
    
    # Keys that are new in the repaired model (Q/K norms)
    QK_NORM_PATTERNS = [
        '.norm_q.weight',
        '.norm_k.weight', 
        '.norm_added_q.weight',
        '.norm_added_k.weight',
    ]
    
    # Keys that may exist in old checkpoints but not new model
    DEPRECATED_PATTERNS = [
        '.sin_basis',  # Old cached sin embeddings
    ]
    
    loaded_keys = []
    missing_keys = []
    unexpected_keys = []
    initialized_keys = []
    
    # First pass: load matching weights
    for key in state_dict.keys():
        if key in model_state:
            if state_dict[key].shape == model_state[key].shape:
                model_state[key] = state_dict[key]
                loaded_keys.append(key)
            else:
                print(f"  âš  Shape mismatch for {key}: checkpoint {state_dict[key].shape} vs model {model_state[key].shape}")
                unexpected_keys.append(key)
        else:
            # Check if it's a known deprecated key
            is_deprecated = any(pat in key for pat in DEPRECATED_PATTERNS)
            if is_deprecated:
                unexpected_keys.append(key)
            else:
                print(f"  âš  Unexpected key (not in model): {key}")
                unexpected_keys.append(key)
    
    # Second pass: handle missing keys
    for key in model_state.keys():
        if key not in loaded_keys:
            # Check if it's a Q/K norm that needs identity initialization
            is_qk_norm = any(pat in key for pat in QK_NORM_PATTERNS)
            
            if is_qk_norm:
                # Initialize to ones (identity transform for RMSNorm)
                model_state[key] = torch.ones_like(model_state[key])
                initialized_keys.append(key)
            else:
                missing_keys.append(key)
                print(f"  âš  Missing key (not in checkpoint): {key}")
    
    # Load the updated state
    model.load_state_dict(model_state, strict=False)
    
    # Report
    if initialized_keys:
        print(f"  ✓ Initialized Q/K norms to identity ({len(initialized_keys)} params):")
        # Group by block for cleaner output
        blocks = set()
        for k in initialized_keys:
            if 'double_blocks' in k:
                block_num = k.split('.')[1]
                blocks.add(f"double_blocks.{block_num}")
            elif 'single_blocks' in k:
                block_num = k.split('.')[1]
                blocks.add(f"single_blocks.{block_num}")
        for block in sorted(blocks):
            print(f"    - {block}.attn.norm_[q,k,added_q,added_k]")
    
    if unexpected_keys:
        deprecated = [k for k in unexpected_keys if any(p in k for p in DEPRECATED_PATTERNS)]
        if deprecated:
            print(f"  ✓ Ignored deprecated keys: {deprecated}")
    
    return missing_keys, unexpected_keys


# ============================================================================
# ALSO UPDATE save_checkpoint TO STRIP _orig_mod PREFIX
# ============================================================================
def save_checkpoint(model, optimizer, scheduler, step, epoch, loss, path, ema_state=None):
    """Save checkpoint with proper handling of torch.compile wrapper."""
    os.makedirs(os.path.dirname(path) if os.path.dirname(path) else ".", exist_ok=True)
    
    # Get state dict, handling torch.compile wrapper
    if hasattr(model, '_orig_mod'):
        state_dict = model._orig_mod.state_dict()
    else:
        state_dict = model.state_dict()
    
    # Ensure proper dtype for storage
    state_dict = {k: v.to(DTYPE) if v.is_floating_point() else v for k, v in state_dict.items()}
    
    # Save weights
    weights_path = path.replace(".pt", ".safetensors")
    save_file(state_dict, weights_path)
    
    # Save EMA weights if provided
    if ema_state is not None:
        ema_weights = {k: v.to(DTYPE) if v.is_floating_point() else v for k, v in ema_state['shadow'].items()}
        ema_weights_path = path.replace(".pt", "_ema.safetensors")
        save_file(ema_weights, ema_weights_path)
    
    # Save optimizer/scheduler state
    state = {
        "step": step,
        "epoch": epoch,
        "loss": loss,
        "optimizer": optimizer.state_dict(),
        "scheduler": scheduler.state_dict(),
    }
    if ema_state is not None:
        state["ema_decay"] = ema_state.get('decay', EMA_DECAY)
    
    torch.save(state, path)
    print(f"  ✓ Saved checkpoint: step {step}")
    return weights_path


# ============================================================================
# CREATE MODEL
# ============================================================================
print("\nCreating TinyFluxDeep model...")
config = TinyFluxDeepConfig()
model = TinyFluxDeep(config).to(device=DEVICE, dtype=DTYPE)

total_params = sum(p.numel() for p in model.parameters())
print(f"Total parameters: {total_params:,}")

trainable_params = [p for p in model.parameters() if p.requires_grad]
print(f"Trainable parameters: {sum(p.numel() for p in trainable_params):,}")

# ============================================================================
# OPTIMIZER
# ============================================================================
opt = torch.optim.AdamW(trainable_params, lr=LR, betas=(0.9, 0.99), weight_decay=0.01, fused=True)

total_steps = len(loader) * EPOCHS // GRAD_ACCUM
warmup = min(1000, total_steps // 10)

def lr_fn(step):
    if step < warmup:
        return step / warmup
    return 0.5 * (1 + math.cos(math.pi * (step - warmup) / (total_steps - warmup)))

sched = torch.optim.lr_scheduler.LambdaLR(opt, lr_fn)

# ============================================================================
# LOAD CHECKPOINT
# ============================================================================
start_step, start_epoch = load_checkpoint(model, opt, sched, LOAD_TARGET)

if RESUME_STEP is not None:
    start_step = RESUME_STEP

# ============================================================================
# COMPILE
# ============================================================================
model = torch.compile(model, mode="default")

# ============================================================================
# EMA
# ============================================================================
print("Initializing EMA...")
ema = EMA(model, decay=EMA_DECAY)

# ============================================================================
# TENSORBOARD
# ============================================================================
run_name = f"run_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
writer = SummaryWriter(os.path.join(LOG_DIR, run_name))

# Sample prompts
SAMPLE_PROMPTS = [
    "a photo of a cat sitting on a windowsill",
    "a portrait of a woman with red hair",
    "a black backpack on white background",
    "a person standing in a t-pose",
]

# ============================================================================
# TRAINING LOOP
# ============================================================================
print(f"\n{'='*60}")
print(f"Training TinyFlux-Deep")
print(f"{'='*60}")
print(f"Total: {len(combined_ds):,} samples")
print(f"Epochs: {EPOCHS}, Steps/epoch: {len(loader)}, Total: {total_steps}")
print(f"Batch: {BATCH_SIZE} x {GRAD_ACCUM} = {BATCH_SIZE * GRAD_ACCUM}")
print(f"Masked loss: {USE_MASKED_LOSS} (fg={FG_LOSS_WEIGHT}, bg={BG_LOSS_WEIGHT})")
print(f"Min-SNR gamma: {MIN_SNR_GAMMA}")
print(f"Resume: step {start_step}, epoch {start_epoch}")

model.train()
step = start_step
best = float("inf")

for ep in range(start_epoch, EPOCHS):
    ep_loss = 0
    ep_batches = 0
    pbar = tqdm(loader, desc=f"E{ep + 1}")

    for i, batch in enumerate(pbar):
        latents = batch["latents"].to(DEVICE, non_blocking=True)
        t5 = batch["t5_embeds"].to(DEVICE, non_blocking=True)
        clip = batch["clip_pooled"].to(DEVICE, non_blocking=True)
        masks = batch["masks"]
        if masks is not None:
            masks = masks.to(DEVICE, non_blocking=True)

        B, C, H, W = latents.shape
        data = latents.permute(0, 2, 3, 1).reshape(B, H * W, C)
        
        noise = torch.randn_like(data)
        
        if TEXT_DROPOUT > 0:
            t5, clip, _ = apply_text_dropout(t5, clip, TEXT_DROPOUT)

        t = torch.sigmoid(torch.randn(B, device=DEVICE))
        t = flux_shift(t, s=SHIFT).to(DTYPE).clamp(1e-4, 1 - 1e-4)

        t_expanded = t.view(B, 1, 1)
        x_t = (1 - t_expanded) * noise + t_expanded * data
        v_target = data - noise

        img_ids = TinyFluxDeep.create_img_ids(B, H, W, DEVICE)
        
        guidance = torch.rand(B, device=DEVICE, dtype=DTYPE) * 4 + 1
        if GUIDANCE_DROPOUT > 0:
            guide_mask = torch.rand(B, device=DEVICE) < GUIDANCE_DROPOUT
            guidance[guide_mask] = 1.0

        with torch.autocast("cuda", dtype=DTYPE):
            v_pred = model(
                hidden_states=x_t,
                encoder_hidden_states=t5,
                pooled_projections=clip,
                timestep=t,
                img_ids=img_ids,
                guidance=guidance,
            )

        # Compute loss with min-SNR weighting
        snr_weights = min_snr_weight(t)  # [B]
        
        # Unified loss: handles mask + SNR weighting
        loss = masked_mse_loss(
            v_pred, v_target, 
            mask=masks if USE_MASKED_LOSS else None,
            fg_weight=FG_LOSS_WEIGHT, 
            bg_weight=BG_LOSS_WEIGHT,
            snr_weights=snr_weights
        ) / GRAD_ACCUM
        
        loss.backward()

        if (i + 1) % GRAD_ACCUM == 0:
            grad_norm = torch.nn.utils.clip_grad_norm_(trainable_params, 1.0)
            opt.step()
            sched.step()
            opt.zero_grad(set_to_none=True)
            
            ema.update(model)
            step += 1

            if step % LOG_EVERY == 0:
                writer.add_scalar("train/loss", loss.item() * GRAD_ACCUM, step)
                writer.add_scalar("train/lr", sched.get_last_lr()[0], step)
                writer.add_scalar("train/grad_norm", grad_norm.item(), step)

            if step % SAMPLE_EVERY == 0:
                print(f"\n  Generating samples at step {step}...")
                images = generate_samples(model, SAMPLE_PROMPTS, num_steps=20, use_ema=True)
                save_samples(images, SAMPLE_PROMPTS, step, SAMPLE_DIR)

            if step % SAVE_EVERY == 0:
                ckpt_path = os.path.join(CHECKPOINT_DIR, f"step_{step}.pt")
                weights_path = save_checkpoint(model, opt, sched, step, ep, loss.item(), ckpt_path, ema_state=ema.state_dict())
                if step % UPLOAD_EVERY == 0:
                    upload_checkpoint(weights_path, step)

        ep_loss += loss.item() * GRAD_ACCUM
        ep_batches += 1
        pbar.set_postfix(loss=f"{loss.item() * GRAD_ACCUM:.4f}", step=step)

    avg = ep_loss / max(ep_batches, 1)
    print(f"Epoch {ep + 1} loss: {avg:.4f}")

    if avg < best:
        best = avg
        weights_path = save_checkpoint(model, opt, sched, step, ep, avg, os.path.join(CHECKPOINT_DIR, "best.pt"), ema_state=ema.state_dict())
        try:
            api.upload_file(path_or_fileobj=weights_path, path_in_repo="model.safetensors", repo_id=HF_REPO)
        except:
            pass

print(f"\n✓ Training complete! Best loss: {best:.4f}")
writer.close()