File size: 46,251 Bytes
aae97e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 |
# ============================================================================
# TinyFlux-Deep Training Cell - Combined Dataset
# ============================================================================
# Datasets:
# - FFHQ portraits (40k × 3 prompts = ~120k)
# - flux-schnell-teacher-latents (train_simple_512 + train_512 + train_2_512 = ~40k)
# - SportFashion_512x512 (54.6k) - with background mask
# - SynthMoCap_smpl_512 (106k) - with SMPL body mask
# Total: ~320k samples
#
# All encoded with flan-t5-base (768 dim)
# Masked loss for foreground-focused training on product/body datasets
#
# USAGE: Run model.py cell first, then this cell
# This converts tiny-flux-deep into tiny-flux-deep-v2, which is a different variant.
# WARNING: It will impact performance and weights, so be aware.
# ============================================================================
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader, Dataset
from datasets import load_dataset, concatenate_datasets
from transformers import T5EncoderModel, T5Tokenizer, CLIPTextModel, CLIPTokenizer
from huggingface_hub import HfApi, hf_hub_download
from safetensors.torch import save_file, load_file
from torch.utils.tensorboard import SummaryWriter
from tqdm.auto import tqdm
import numpy as np
import math
import json
import random
from typing import Tuple, Optional, Dict, List
import os
from datetime import datetime
from PIL import Image
# ============================================================================
# CUDA OPTIMIZATIONS
# ============================================================================
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
torch.backends.cudnn.benchmark = True
torch.set_float32_matmul_precision('high')
import warnings
warnings.filterwarnings('ignore', message='.*TF32.*')
# ============================================================================
# CONFIG
# ============================================================================
BATCH_SIZE = 16
GRAD_ACCUM = 2
LR = 3e-4
EPOCHS = 20
MAX_SEQ = 128
SHIFT = 3.0
DEVICE = "cuda"
DTYPE = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
ALLOW_WEIGHT_UPGRADE = True # Set to False to require exact weight match
# HuggingFace Hub
HF_REPO = "AbstractPhil/tiny-flux-deep"
SAVE_EVERY = 625
UPLOAD_EVERY = 625
SAMPLE_EVERY = 312
LOG_EVERY = 10
LOG_UPLOAD_EVERY = 625
# Checkpoint loading
LOAD_TARGET = "latest" # "hub", "latest", "best", "none"
RESUME_STEP = None
# ============================================================================
# DATASET CONFIG - Enable/disable datasets for this run
# ============================================================================
ENABLE_PORTRAIT = False
ENABLE_SCHNELL = True
ENABLE_SPORTFASHION = False # Disabled for disk space
ENABLE_SYNTHMOCAP = False # Disabled for disk space
# Dataset repos
PORTRAIT_REPO = "AbstractPhil/ffhq_flux_latents_repaired"
PORTRAIT_NUM_SHARDS = 11
SCHNELL_REPO = "AbstractPhil/flux-schnell-teacher-latents"
SCHNELL_CONFIGS = ["train_simple_512"] # Add "train_512", "train_2_512" as disk allows
SPORTFASHION_REPO = "Pianokill/SportFashion_512x512"
SYNTHMOCAP_REPO = "toyxyz/SynthMoCap_smpl_512"
# Masked loss config
# Weight foreground higher than background
FG_LOSS_WEIGHT = 2.0 # Foreground multiplier
BG_LOSS_WEIGHT = 0.5 # Background multiplier
USE_MASKED_LOSS = False
# Min-SNR weighting for flow matching
MIN_SNR_GAMMA = 5.0
# Paths
CHECKPOINT_DIR = "./tiny_flux_deep_checkpoints"
LOG_DIR = "./tiny_flux_deep_logs"
SAMPLE_DIR = "./tiny_flux_deep_samples"
ENCODING_CACHE_DIR = "./encoding_cache"
LATENT_CACHE_DIR = "./latent_cache"
os.makedirs(CHECKPOINT_DIR, exist_ok=True)
os.makedirs(LOG_DIR, exist_ok=True)
os.makedirs(SAMPLE_DIR, exist_ok=True)
os.makedirs(ENCODING_CACHE_DIR, exist_ok=True)
os.makedirs(LATENT_CACHE_DIR, exist_ok=True)
# ============================================================================
# REGULARIZATION CONFIG
# ============================================================================
TEXT_DROPOUT = 0.1
GUIDANCE_DROPOUT = 0.1
EMA_DECAY = 0.9999
# ============================================================================
# EMA
# ============================================================================
class EMA:
def __init__(self, model, decay=0.9999):
self.decay = decay
self.shadow = {}
self._backup = {}
if hasattr(model, '_orig_mod'):
state = model._orig_mod.state_dict()
else:
state = model.state_dict()
for k, v in state.items():
self.shadow[k] = v.clone().detach()
@torch.no_grad()
def update(self, model):
if hasattr(model, '_orig_mod'):
state = model._orig_mod.state_dict()
else:
state = model.state_dict()
for k, v in state.items():
if k in self.shadow:
self.shadow[k].lerp_(v.to(self.shadow[k].dtype), 1 - self.decay)
def apply_shadow_for_eval(self, model):
if hasattr(model, '_orig_mod'):
self._backup = {k: v.clone() for k, v in model._orig_mod.state_dict().items()}
model._orig_mod.load_state_dict(self.shadow)
else:
self._backup = {k: v.clone() for k, v in model.state_dict().items()}
model.load_state_dict(self.shadow)
def restore(self, model):
if hasattr(model, '_orig_mod'):
model._orig_mod.load_state_dict(self._backup)
else:
model.load_state_dict(self._backup)
self._backup = {}
def state_dict(self):
return {'shadow': self.shadow, 'decay': self.decay}
def load_state_dict(self, state):
self.shadow = {k: v.clone() for k, v in state['shadow'].items()}
self.decay = state.get('decay', self.decay)
# ============================================================================
# REGULARIZATION
# ============================================================================
def apply_text_dropout(t5_embeds, clip_pooled, dropout_prob=0.1):
B = t5_embeds.shape[0]
mask = torch.rand(B, device=t5_embeds.device) < dropout_prob
t5_embeds = t5_embeds.clone()
clip_pooled = clip_pooled.clone()
t5_embeds[mask] = 0
clip_pooled[mask] = 0
return t5_embeds, clip_pooled, mask
# ============================================================================
# MASKING UTILITIES
# ============================================================================
def detect_background_color(image: Image.Image, sample_size: int = 100) -> Tuple[int, int, int]:
"""Detect dominant background color by sampling corners."""
img = np.array(image)
if len(img.shape) == 2:
img = np.stack([img] * 3, axis=-1)
h, w = img.shape[:2]
corners = [
img[:sample_size, :sample_size], # Top-left
img[:sample_size, -sample_size:], # Top-right
img[-sample_size:, :sample_size], # Bottom-left
img[-sample_size:, -sample_size:], # Bottom-right
]
# Compute median color across corners
corner_pixels = np.concatenate([c.reshape(-1, 3) for c in corners], axis=0)
bg_color = np.median(corner_pixels, axis=0).astype(np.uint8)
return tuple(bg_color)
def create_product_mask(image: Image.Image, threshold: int = 30) -> np.ndarray:
"""Create foreground mask for product images (non-background pixels)."""
img = np.array(image).astype(np.float32)
if len(img.shape) == 2:
img = np.stack([img] * 3, axis=-1)
bg_color = detect_background_color(image)
bg_color = np.array(bg_color, dtype=np.float32)
# Distance from background color
diff = np.sqrt(np.sum((img - bg_color) ** 2, axis=-1))
mask = (diff > threshold).astype(np.float32)
return mask
def create_smpl_mask(conditioning_image: Image.Image, threshold: int = 20) -> np.ndarray:
"""Create body mask from SMPL conditioning render.
SynthMoCap uses green/teal background. Body is rendered as mesh.
Non-green pixels = body.
"""
img = np.array(conditioning_image).astype(np.float32)
if len(img.shape) == 2:
return (img > threshold).astype(np.float32)
# Green background detection (high G, low R and B relative to G)
r, g, b = img[:, :, 0], img[:, :, 1], img[:, :, 2]
# Background is typically green/teal
# Body pixels have different color distribution
is_background = (g > r + 20) & (g > b + 20)
mask = (~is_background).astype(np.float32)
return mask
def downsample_mask_to_latent(mask: np.ndarray, latent_h: int = 64, latent_w: int = 64) -> torch.Tensor:
"""Downsample pixel mask to latent space dimensions."""
# Use area averaging for downsampling
mask_pil = Image.fromarray((mask * 255).astype(np.uint8))
mask_pil = mask_pil.resize((latent_w, latent_h), Image.Resampling.BILINEAR)
mask_latent = np.array(mask_pil).astype(np.float32) / 255.0
return torch.from_numpy(mask_latent)
# ============================================================================
# HF HUB SETUP
# ============================================================================
print("Setting up HuggingFace Hub...")
api = HfApi()
# ============================================================================
# FLOW MATCHING HELPERS
# ============================================================================
def flux_shift(t, s=SHIFT):
return s * t / (1 + (s - 1) * t)
def min_snr_weight(t, gamma=MIN_SNR_GAMMA):
"""Min-SNR weighting for flow matching to balance loss across timesteps."""
snr = (t / (1 - t).clamp(min=1e-5)).pow(2)
return torch.clamp(snr, max=gamma) / snr.clamp(min=1e-5)
# ============================================================================
# LOAD TEXT ENCODERS
# ============================================================================
print("Loading text encoders...")
t5_tok = T5Tokenizer.from_pretrained("google/flan-t5-base")
t5_enc = T5EncoderModel.from_pretrained("google/flan-t5-base", torch_dtype=DTYPE).to(DEVICE).eval()
for p in t5_enc.parameters():
p.requires_grad = False
clip_tok = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
clip_enc = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=DTYPE).to(DEVICE).eval()
for p in clip_enc.parameters():
p.requires_grad = False
print("✓ Text encoders loaded")
# ============================================================================
# LOAD VAE
# ============================================================================
print("Loading VAE...")
from diffusers import AutoencoderKL
vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=DTYPE).to(DEVICE).eval()
for p in vae.parameters():
p.requires_grad = False
VAE_SCALE = vae.config.scaling_factor
print(f"✓ VAE loaded (scale={VAE_SCALE})")
# ============================================================================
# ENCODING FUNCTIONS
# ============================================================================
@torch.no_grad()
def encode_prompt(prompt: str) -> Tuple[torch.Tensor, torch.Tensor]:
t5_inputs = t5_tok(prompt, return_tensors="pt", padding="max_length",
max_length=MAX_SEQ, truncation=True).to(DEVICE)
t5_out = t5_enc(**t5_inputs).last_hidden_state
clip_inputs = clip_tok(prompt, return_tensors="pt", padding="max_length",
max_length=77, truncation=True).to(DEVICE)
clip_out = clip_enc(**clip_inputs).pooler_output
return t5_out.squeeze(0), clip_out.squeeze(0)
@torch.no_grad()
def encode_prompts_batched(prompts: List[str], batch_size: int = 64) -> Tuple[torch.Tensor, torch.Tensor]:
all_t5 = []
all_clip = []
for i in tqdm(range(0, len(prompts), batch_size), desc="Encoding", leave=False):
batch = prompts[i:i+batch_size]
t5_inputs = t5_tok(batch, return_tensors="pt", padding="max_length",
max_length=MAX_SEQ, truncation=True).to(DEVICE)
t5_out = t5_enc(**t5_inputs).last_hidden_state
all_t5.append(t5_out.cpu())
clip_inputs = clip_tok(batch, return_tensors="pt", padding="max_length",
max_length=77, truncation=True).to(DEVICE)
clip_out = clip_enc(**clip_inputs).pooler_output
all_clip.append(clip_out.cpu())
return torch.cat(all_t5, dim=0), torch.cat(all_clip, dim=0)
@torch.no_grad()
def encode_image_to_latent(image: Image.Image) -> torch.Tensor:
"""Encode PIL image to VAE latent."""
if image.mode != "RGB":
image = image.convert("RGB")
# Resize to 512x512 if needed
if image.size != (512, 512):
image = image.resize((512, 512), Image.Resampling.LANCZOS)
# To tensor and normalize
img_tensor = torch.from_numpy(np.array(image)).float() / 255.0
img_tensor = img_tensor.permute(2, 0, 1).unsqueeze(0) # [1, 3, H, W]
img_tensor = (img_tensor * 2.0 - 1.0).to(DEVICE, dtype=DTYPE)
# Encode
latent = vae.encode(img_tensor).latent_dist.sample()
latent = latent * VAE_SCALE
return latent.squeeze(0).cpu() # [16, 64, 64]
# ============================================================================
# LOAD DATASETS
# ============================================================================
# --- 1. Portrait Dataset (FFHQ) ---
portrait_ds = None
portrait_indices = []
portrait_prompts = []
if ENABLE_PORTRAIT:
print(f"\n[1/4] Loading portrait dataset from {PORTRAIT_REPO}...")
portrait_shards = []
for i in range(PORTRAIT_NUM_SHARDS):
split_name = f"train_{i:02d}"
print(f" Loading {split_name}...")
shard = load_dataset(PORTRAIT_REPO, split=split_name)
portrait_shards.append(shard)
portrait_ds = concatenate_datasets(portrait_shards)
print(f"✓ Portrait: {len(portrait_ds)} base samples")
# Extract triplicated prompts - batch read columns then iterate
print(" Extracting prompts (columnar)...")
# Batch read all three columns at once (fast Arrow read)
florence_list = list(portrait_ds["text_florence"])
llava_list = list(portrait_ds["text_llava"])
blip_list = list(portrait_ds["text_blip"])
# Build from Python lists (instant)
for i, (f, l, b) in enumerate(zip(florence_list, llava_list, blip_list)):
if f and f.strip():
portrait_indices.append(i)
portrait_prompts.append(f)
if l and l.strip():
portrait_indices.append(i)
portrait_prompts.append(l)
if b and b.strip():
portrait_indices.append(i)
portrait_prompts.append(b)
print(f" Expanded: {len(portrait_prompts)} samples (3 prompts/image)")
else:
print("\n[1/4] Portrait dataset DISABLED")
# --- 2. Schnell Teacher Dataset ---
schnell_ds = None
schnell_prompts = []
if ENABLE_SCHNELL:
print(f"\n[2/4] Loading schnell teacher dataset from {SCHNELL_REPO}...")
schnell_datasets = []
for config in SCHNELL_CONFIGS:
print(f" Loading {config}...")
ds = load_dataset(SCHNELL_REPO, config, split="train")
schnell_datasets.append(ds)
print(f" {len(ds)} samples")
schnell_ds = concatenate_datasets(schnell_datasets)
schnell_prompts = list(schnell_ds["prompt"])
print(f"✓ Schnell: {len(schnell_ds)} samples")
else:
print("\n[2/4] Schnell dataset DISABLED")
# --- 3. SportFashion Dataset ---
sportfashion_ds = None
sportfashion_prompts = []
if ENABLE_SPORTFASHION:
print(f"\n[3/4] Loading SportFashion dataset from {SPORTFASHION_REPO}...")
sportfashion_ds = load_dataset(SPORTFASHION_REPO, split="train")
sportfashion_prompts = list(sportfashion_ds["text"])
print(f"✓ SportFashion: {len(sportfashion_ds)} samples")
else:
print("\n[3/4] SportFashion dataset DISABLED")
# --- 4. SynthMoCap Dataset ---
synthmocap_ds = None
synthmocap_prompts = []
if ENABLE_SYNTHMOCAP:
print(f"\n[4/4] Loading SynthMoCap dataset from {SYNTHMOCAP_REPO}...")
synthmocap_ds = load_dataset(SYNTHMOCAP_REPO, split="train")
synthmocap_prompts = list(synthmocap_ds["text"])
print(f"✓ SynthMoCap: {len(synthmocap_ds)} samples")
else:
print("\n[4/4] SynthMoCap dataset DISABLED")
# ============================================================================
# ENCODE ALL PROMPTS
# ============================================================================
total_samples = len(portrait_prompts) + len(schnell_prompts) + len(sportfashion_prompts) + len(synthmocap_prompts)
print(f"\nTotal combined samples: {total_samples}")
def load_or_encode(cache_path, prompts, name):
if not prompts:
return None, None
if os.path.exists(cache_path):
print(f"Loading cached {name} encodings...")
cached = torch.load(cache_path)
return cached["t5_embeds"], cached["clip_pooled"]
else:
print(f"Encoding {len(prompts)} {name} prompts...")
t5, clip = encode_prompts_batched(prompts, batch_size=64)
torch.save({"t5_embeds": t5, "clip_pooled": clip}, cache_path)
print(f"✓ Cached to {cache_path}")
return t5, clip
# Cache paths and encoding
portrait_t5, portrait_clip = None, None
schnell_t5, schnell_clip = None, None
sportfashion_t5, sportfashion_clip = None, None
synthmocap_t5, synthmocap_clip = None, None
if portrait_prompts:
portrait_enc_cache = os.path.join(ENCODING_CACHE_DIR, f"portrait_encodings_{len(portrait_prompts)}.pt")
portrait_t5, portrait_clip = load_or_encode(portrait_enc_cache, portrait_prompts, "portrait")
if schnell_prompts:
schnell_enc_cache = os.path.join(ENCODING_CACHE_DIR, f"schnell_encodings_{len(schnell_prompts)}.pt")
schnell_t5, schnell_clip = load_or_encode(schnell_enc_cache, schnell_prompts, "schnell")
if sportfashion_prompts:
sportfashion_enc_cache = os.path.join(ENCODING_CACHE_DIR, f"sportfashion_encodings_{len(sportfashion_prompts)}.pt")
sportfashion_t5, sportfashion_clip = load_or_encode(sportfashion_enc_cache, sportfashion_prompts, "sportfashion")
if synthmocap_prompts:
synthmocap_enc_cache = os.path.join(ENCODING_CACHE_DIR, f"synthmocap_encodings_{len(synthmocap_prompts)}.pt")
synthmocap_t5, synthmocap_clip = load_or_encode(synthmocap_enc_cache, synthmocap_prompts, "synthmocap")
# ============================================================================
# COMBINED DATASET CLASS WITH MASK SUPPORT
# ============================================================================
class CombinedDataset(Dataset):
"""Combined dataset with mask support for weighted loss."""
def __init__(
self,
portrait_ds, portrait_indices, portrait_t5, portrait_clip,
schnell_ds, schnell_t5, schnell_clip,
sportfashion_ds, sportfashion_t5, sportfashion_clip,
synthmocap_ds, synthmocap_t5, synthmocap_clip,
vae, vae_scale, device, dtype,
compute_masks=True
):
self.portrait_ds = portrait_ds
self.portrait_indices = portrait_indices
self.portrait_t5 = portrait_t5
self.portrait_clip = portrait_clip
self.schnell_ds = schnell_ds
self.schnell_t5 = schnell_t5
self.schnell_clip = schnell_clip
self.sportfashion_ds = sportfashion_ds
self.sportfashion_t5 = sportfashion_t5
self.sportfashion_clip = sportfashion_clip
self.synthmocap_ds = synthmocap_ds
self.synthmocap_t5 = synthmocap_t5
self.synthmocap_clip = synthmocap_clip
self.vae = vae
self.vae_scale = vae_scale
self.device = device
self.dtype = dtype
self.compute_masks = compute_masks
# Dataset sizes (0 if disabled)
self.n_portrait = len(portrait_indices) if portrait_indices else 0
self.n_schnell = len(schnell_ds) if schnell_ds else 0
self.n_sportfashion = len(sportfashion_ds) if sportfashion_ds else 0
self.n_synthmocap = len(synthmocap_ds) if synthmocap_ds else 0
# Cumulative indices for fast lookup
self.c1 = self.n_portrait
self.c2 = self.c1 + self.n_schnell
self.c3 = self.c2 + self.n_sportfashion
self.total = self.c3 + self.n_synthmocap
def __len__(self):
return self.total
def _get_latent_from_array(self, latent_data):
"""Convert latent data to tensor."""
if isinstance(latent_data, torch.Tensor):
return latent_data.to(self.dtype)
return torch.tensor(np.array(latent_data), dtype=self.dtype)
@torch.no_grad()
def _encode_image(self, image):
"""Encode PIL image to VAE latent."""
if image.mode != "RGB":
image = image.convert("RGB")
if image.size != (512, 512):
image = image.resize((512, 512), Image.Resampling.LANCZOS)
img_tensor = torch.from_numpy(np.array(image)).float() / 255.0
img_tensor = img_tensor.permute(2, 0, 1).unsqueeze(0)
img_tensor = (img_tensor * 2.0 - 1.0).to(self.device, dtype=self.dtype)
latent = self.vae.encode(img_tensor).latent_dist.sample()
latent = latent * self.vae_scale
return latent.squeeze(0).cpu()
def __getitem__(self, idx):
mask = None # Default: no mask (uniform loss)
if idx < self.c1:
# Portrait sample (has pre-computed latent, no mask needed)
orig_idx = self.portrait_indices[idx]
item = self.portrait_ds[orig_idx]
latent = self._get_latent_from_array(item["latent"])
t5 = self.portrait_t5[idx]
clip = self.portrait_clip[idx]
elif idx < self.c2:
# Schnell sample (has pre-computed latent, no mask needed)
schnell_idx = idx - self.c1
item = self.schnell_ds[schnell_idx]
latent = self._get_latent_from_array(item["latent"])
t5 = self.schnell_t5[schnell_idx]
clip = self.schnell_clip[schnell_idx]
elif idx < self.c3:
# SportFashion (needs VAE encoding + product mask)
sf_idx = idx - self.c2
item = self.sportfashion_ds[sf_idx]
image = item["image"]
latent = self._encode_image(image)
t5 = self.sportfashion_t5[sf_idx]
clip = self.sportfashion_clip[sf_idx]
if self.compute_masks:
pixel_mask = create_product_mask(image)
mask = downsample_mask_to_latent(pixel_mask, 64, 64)
else:
# SynthMoCap (needs VAE encoding + SMPL body mask)
sm_idx = idx - self.c3
item = self.synthmocap_ds[sm_idx]
image = item["image"]
conditioning = item["conditioning_image"]
latent = self._encode_image(image)
t5 = self.synthmocap_t5[sm_idx]
clip = self.synthmocap_clip[sm_idx]
if self.compute_masks:
pixel_mask = create_smpl_mask(conditioning)
mask = downsample_mask_to_latent(pixel_mask, 64, 64)
result = {
"latent": latent,
"t5_embed": t5.to(self.dtype),
"clip_pooled": clip.to(self.dtype),
}
if mask is not None:
result["mask"] = mask.to(self.dtype)
return result
# ============================================================================
# COLLATE FUNCTION
# ============================================================================
def collate_fn(batch):
latents = torch.stack([b["latent"] for b in batch])
t5_embeds = torch.stack([b["t5_embed"] for b in batch])
clip_pooled = torch.stack([b["clip_pooled"] for b in batch])
# Handle masks (some samples may not have masks)
masks = None
if any("mask" in b for b in batch):
masks = []
for b in batch:
if "mask" in b:
masks.append(b["mask"])
else:
# No mask = uniform weight (all 1s)
masks.append(torch.ones(64, 64, dtype=latents.dtype))
masks = torch.stack(masks)
return {
"latents": latents,
"t5_embeds": t5_embeds,
"clip_pooled": clip_pooled,
"masks": masks,
}
# ============================================================================
# MASKED LOSS FUNCTION
# ============================================================================
def masked_mse_loss(pred, target, mask=None, fg_weight=2.0, bg_weight=0.5, snr_weights=None):
"""
Compute MSE loss with optional foreground/background weighting and min-SNR.
Args:
pred: [B, H*W, C] predicted velocity
target: [B, H*W, C] target velocity
mask: [B, H, W] foreground mask (1=foreground, 0=background) or None
fg_weight: Weight for foreground pixels
bg_weight: Weight for background pixels
snr_weights: [B] min-SNR weights per sample or None
Returns:
Scalar loss value
"""
B, N, C = pred.shape
if mask is None:
# No spatial mask - compute per-sample loss
loss_per_sample = ((pred - target) ** 2).mean(dim=[1, 2]) # [B]
else:
H = W = int(math.sqrt(N))
mask_flat = mask.view(B, H * W, 1).to(pred.device)
sq_error = (pred - target) ** 2
weights = mask_flat * fg_weight + (1 - mask_flat) * bg_weight
weighted_error = sq_error * weights
loss_per_sample = weighted_error.mean(dim=[1, 2]) # [B]
# Apply min-SNR weighting if provided
if snr_weights is not None:
loss_per_sample = loss_per_sample * snr_weights
return loss_per_sample.mean()
# ============================================================================
# CREATE DATASET
# ============================================================================
print("\nCreating combined dataset...")
combined_ds = CombinedDataset(
portrait_ds, portrait_indices, portrait_t5, portrait_clip,
schnell_ds, schnell_t5, schnell_clip,
sportfashion_ds, sportfashion_t5, sportfashion_clip,
synthmocap_ds, synthmocap_t5, synthmocap_clip,
vae, VAE_SCALE, DEVICE, DTYPE,
compute_masks=USE_MASKED_LOSS
)
print(f"✓ Combined dataset: {len(combined_ds)} samples")
print(f" - Portraits (3x): {combined_ds.n_portrait:,}")
print(f" - Schnell teacher: {combined_ds.n_schnell:,}")
print(f" - SportFashion: {combined_ds.n_sportfashion:,}")
print(f" - SynthMoCap: {combined_ds.n_synthmocap:,}")
# ============================================================================
# DATALOADER
# ============================================================================
loader = DataLoader(
combined_ds,
batch_size=BATCH_SIZE,
shuffle=True,
num_workers=8,
pin_memory=True,
collate_fn=collate_fn,
drop_last=True,
)
print(f"✓ DataLoader: {len(loader)} batches/epoch")
# ============================================================================
# SAMPLING FUNCTION
# ============================================================================
@torch.inference_mode()
def generate_samples(model, prompts, num_steps=28, guidance_scale=3.5, H=64, W=64, use_ema=True):
was_training = model.training
model.eval()
if use_ema and 'ema' in globals() and ema is not None:
ema.apply_shadow_for_eval(model)
B = len(prompts)
C = 16
t5_list, clip_list = [], []
for p in prompts:
t5, clip = encode_prompt(p)
t5_list.append(t5)
clip_list.append(clip)
t5_embeds = torch.stack(t5_list).to(DTYPE)
clip_pooleds = torch.stack(clip_list).to(DTYPE)
x = torch.randn(B, H * W, C, device=DEVICE, dtype=DTYPE)
img_ids = TinyFluxDeep.create_img_ids(B, H, W, DEVICE)
t_linear = torch.linspace(0, 1, num_steps + 1, device=DEVICE, dtype=DTYPE)
timesteps = flux_shift(t_linear, s=SHIFT)
for i in range(num_steps):
t_curr = timesteps[i]
t_next = timesteps[i + 1]
dt = t_next - t_curr
t_batch = t_curr.expand(B).to(DTYPE)
guidance = torch.full((B,), guidance_scale, device=DEVICE, dtype=DTYPE)
with torch.autocast("cuda", dtype=DTYPE):
v_cond = model(
hidden_states=x,
encoder_hidden_states=t5_embeds,
pooled_projections=clip_pooleds,
timestep=t_batch,
img_ids=img_ids,
guidance=guidance,
)
x = x + v_cond * dt
latents = x.reshape(B, H, W, C).permute(0, 3, 1, 2)
latents = latents / VAE_SCALE
with torch.autocast("cuda", dtype=DTYPE):
images = vae.decode(latents.to(vae.dtype)).sample
images = (images / 2 + 0.5).clamp(0, 1)
if use_ema and 'ema' in globals() and ema is not None:
ema.restore(model)
if was_training:
model.train()
return images
def save_samples(images, prompts, step, output_dir):
from torchvision.utils import save_image
os.makedirs(output_dir, exist_ok=True)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
grid_path = os.path.join(output_dir, f"samples_step_{step}.png")
save_image(images, grid_path, nrow=2, padding=2)
try:
api.upload_file(
path_or_fileobj=grid_path,
path_in_repo=f"samples/{timestamp}_step_{step}.png",
repo_id=HF_REPO,
)
except:
pass
# ============================================================================
# CHECKPOINT LOADING WITH WEIGHT UPGRADE SUPPORT
# ============================================================================
# Add this config flag near your other CONFIG section:
#
# ALLOW_WEIGHT_UPGRADE = True # Allow loading old checkpoints into new model
# ============================================================================
def load_checkpoint(model, optimizer, scheduler, target):
"""
Load checkpoint with optional weight upgrade support.
When ALLOW_WEIGHT_UPGRADE=True:
- Missing Q/K norm weights are initialized to ones (identity transform)
- Unexpected keys (e.g., old sin_basis caches) are ignored
- Model behavior is identical to old weights at load time
When ALLOW_WEIGHT_UPGRADE=False:
- Requires exact weight match (strict=True)
"""
start_step = 0
start_epoch = 0
if target == "none":
print("Starting fresh (no checkpoint)")
return start_step, start_epoch
ckpt_path = None
weights_path = None
if target == "latest":
if os.path.exists(CHECKPOINT_DIR):
ckpts = [f for f in os.listdir(CHECKPOINT_DIR) if f.startswith("step_") and f.endswith(".pt")]
if ckpts:
steps = [int(f.split("_")[1].split(".")[0]) for f in ckpts]
latest_step = max(steps)
ckpt_path = os.path.join(CHECKPOINT_DIR, f"step_{latest_step}.pt")
weights_path = ckpt_path.replace(".pt", ".safetensors")
elif target == "hub" or target.startswith("hub:"):
try:
from huggingface_hub import list_repo_files
if target.startswith("hub:"):
step_name = target.split(":")[1]
weights_path = hf_hub_download(HF_REPO, f"checkpoints/{step_name}.safetensors")
start_step = int(step_name.split("_")[1]) if "_" in step_name else 0
print(f"Downloaded {step_name} from hub")
else:
files = list_repo_files(HF_REPO)
ckpts = [f for f in files if f.startswith("checkpoints/step_") and f.endswith(".safetensors") and "_ema" not in f]
if ckpts:
steps = [int(f.split("_")[1].split(".")[0]) for f in ckpts]
latest = max(steps)
weights_path = hf_hub_download(HF_REPO, f"checkpoints/step_{latest}.safetensors")
start_step = latest
print(f"Downloaded step_{latest} from hub")
except Exception as e:
print(f"Could not download from hub: {e}")
return start_step, start_epoch
elif target == "best":
ckpt_path = os.path.join(CHECKPOINT_DIR, "best.pt")
weights_path = ckpt_path.replace(".pt", ".safetensors")
elif os.path.exists(target):
# Direct path provided
if target.endswith(".safetensors"):
weights_path = target
ckpt_path = target.replace(".safetensors", ".pt")
else:
ckpt_path = target
weights_path = target.replace(".pt", ".safetensors")
if weights_path and os.path.exists(weights_path):
print(f"Loading weights from {weights_path}")
state_dict = load_file(weights_path)
state_dict = {k: v.to(DTYPE) if v.is_floating_point() else v for k, v in state_dict.items()}
# Get model reference (handle torch.compile wrapper)
model_ref = model._orig_mod if hasattr(model, '_orig_mod') else model
if ALLOW_WEIGHT_UPGRADE:
# Flexible loading with weight upgrade
missing, unexpected = load_with_weight_upgrade(model_ref, state_dict)
if missing:
print(f" ℹ Initialized {len(missing)} new parameters (identity)")
if unexpected:
print(f" ℹ Ignored {len(unexpected)} deprecated parameters")
else:
# Strict loading - must match exactly
model_ref.load_state_dict(state_dict, strict=True)
print(f"✓ Loaded model weights")
if ckpt_path and os.path.exists(ckpt_path):
state = torch.load(ckpt_path, map_location="cpu")
start_step = state.get("step", 0)
start_epoch = state.get("epoch", 0)
try:
optimizer.load_state_dict(state["optimizer"])
scheduler.load_state_dict(state["scheduler"])
print(f"✓ Loaded optimizer/scheduler state")
except:
print(" âš Could not load optimizer state (will use fresh optimizer)")
print(f"Resuming from step {start_step}, epoch {start_epoch}")
return start_step, start_epoch
def load_with_weight_upgrade(model, state_dict):
"""
Load state dict with automatic handling of:
- Missing Q/K norm weights → initialize to ones (identity)
- Unexpected keys → ignore (e.g., old sin_basis caches)
Returns:
(missing_keys, unexpected_keys) - lists of handled keys
"""
model_state = model.state_dict()
# Keys that are new in the repaired model (Q/K norms)
QK_NORM_PATTERNS = [
'.norm_q.weight',
'.norm_k.weight',
'.norm_added_q.weight',
'.norm_added_k.weight',
]
# Keys that may exist in old checkpoints but not new model
DEPRECATED_PATTERNS = [
'.sin_basis', # Old cached sin embeddings
]
loaded_keys = []
missing_keys = []
unexpected_keys = []
initialized_keys = []
# First pass: load matching weights
for key in state_dict.keys():
if key in model_state:
if state_dict[key].shape == model_state[key].shape:
model_state[key] = state_dict[key]
loaded_keys.append(key)
else:
print(f" âš Shape mismatch for {key}: checkpoint {state_dict[key].shape} vs model {model_state[key].shape}")
unexpected_keys.append(key)
else:
# Check if it's a known deprecated key
is_deprecated = any(pat in key for pat in DEPRECATED_PATTERNS)
if is_deprecated:
unexpected_keys.append(key)
else:
print(f" âš Unexpected key (not in model): {key}")
unexpected_keys.append(key)
# Second pass: handle missing keys
for key in model_state.keys():
if key not in loaded_keys:
# Check if it's a Q/K norm that needs identity initialization
is_qk_norm = any(pat in key for pat in QK_NORM_PATTERNS)
if is_qk_norm:
# Initialize to ones (identity transform for RMSNorm)
model_state[key] = torch.ones_like(model_state[key])
initialized_keys.append(key)
else:
missing_keys.append(key)
print(f" âš Missing key (not in checkpoint): {key}")
# Load the updated state
model.load_state_dict(model_state, strict=False)
# Report
if initialized_keys:
print(f" ✓ Initialized Q/K norms to identity ({len(initialized_keys)} params):")
# Group by block for cleaner output
blocks = set()
for k in initialized_keys:
if 'double_blocks' in k:
block_num = k.split('.')[1]
blocks.add(f"double_blocks.{block_num}")
elif 'single_blocks' in k:
block_num = k.split('.')[1]
blocks.add(f"single_blocks.{block_num}")
for block in sorted(blocks):
print(f" - {block}.attn.norm_[q,k,added_q,added_k]")
if unexpected_keys:
deprecated = [k for k in unexpected_keys if any(p in k for p in DEPRECATED_PATTERNS)]
if deprecated:
print(f" ✓ Ignored deprecated keys: {deprecated}")
return missing_keys, unexpected_keys
# ============================================================================
# ALSO UPDATE save_checkpoint TO STRIP _orig_mod PREFIX
# ============================================================================
def save_checkpoint(model, optimizer, scheduler, step, epoch, loss, path, ema_state=None):
"""Save checkpoint with proper handling of torch.compile wrapper."""
os.makedirs(os.path.dirname(path) if os.path.dirname(path) else ".", exist_ok=True)
# Get state dict, handling torch.compile wrapper
if hasattr(model, '_orig_mod'):
state_dict = model._orig_mod.state_dict()
else:
state_dict = model.state_dict()
# Ensure proper dtype for storage
state_dict = {k: v.to(DTYPE) if v.is_floating_point() else v for k, v in state_dict.items()}
# Save weights
weights_path = path.replace(".pt", ".safetensors")
save_file(state_dict, weights_path)
# Save EMA weights if provided
if ema_state is not None:
ema_weights = {k: v.to(DTYPE) if v.is_floating_point() else v for k, v in ema_state['shadow'].items()}
ema_weights_path = path.replace(".pt", "_ema.safetensors")
save_file(ema_weights, ema_weights_path)
# Save optimizer/scheduler state
state = {
"step": step,
"epoch": epoch,
"loss": loss,
"optimizer": optimizer.state_dict(),
"scheduler": scheduler.state_dict(),
}
if ema_state is not None:
state["ema_decay"] = ema_state.get('decay', EMA_DECAY)
torch.save(state, path)
print(f" ✓ Saved checkpoint: step {step}")
return weights_path
# ============================================================================
# CREATE MODEL
# ============================================================================
print("\nCreating TinyFluxDeep model...")
config = TinyFluxDeepConfig()
model = TinyFluxDeep(config).to(device=DEVICE, dtype=DTYPE)
total_params = sum(p.numel() for p in model.parameters())
print(f"Total parameters: {total_params:,}")
trainable_params = [p for p in model.parameters() if p.requires_grad]
print(f"Trainable parameters: {sum(p.numel() for p in trainable_params):,}")
# ============================================================================
# OPTIMIZER
# ============================================================================
opt = torch.optim.AdamW(trainable_params, lr=LR, betas=(0.9, 0.99), weight_decay=0.01, fused=True)
total_steps = len(loader) * EPOCHS // GRAD_ACCUM
warmup = min(1000, total_steps // 10)
def lr_fn(step):
if step < warmup:
return step / warmup
return 0.5 * (1 + math.cos(math.pi * (step - warmup) / (total_steps - warmup)))
sched = torch.optim.lr_scheduler.LambdaLR(opt, lr_fn)
# ============================================================================
# LOAD CHECKPOINT
# ============================================================================
start_step, start_epoch = load_checkpoint(model, opt, sched, LOAD_TARGET)
if RESUME_STEP is not None:
start_step = RESUME_STEP
# ============================================================================
# COMPILE
# ============================================================================
model = torch.compile(model, mode="default")
# ============================================================================
# EMA
# ============================================================================
print("Initializing EMA...")
ema = EMA(model, decay=EMA_DECAY)
# ============================================================================
# TENSORBOARD
# ============================================================================
run_name = f"run_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
writer = SummaryWriter(os.path.join(LOG_DIR, run_name))
# Sample prompts
SAMPLE_PROMPTS = [
"a photo of a cat sitting on a windowsill",
"a portrait of a woman with red hair",
"a black backpack on white background",
"a person standing in a t-pose",
]
# ============================================================================
# TRAINING LOOP
# ============================================================================
print(f"\n{'='*60}")
print(f"Training TinyFlux-Deep")
print(f"{'='*60}")
print(f"Total: {len(combined_ds):,} samples")
print(f"Epochs: {EPOCHS}, Steps/epoch: {len(loader)}, Total: {total_steps}")
print(f"Batch: {BATCH_SIZE} x {GRAD_ACCUM} = {BATCH_SIZE * GRAD_ACCUM}")
print(f"Masked loss: {USE_MASKED_LOSS} (fg={FG_LOSS_WEIGHT}, bg={BG_LOSS_WEIGHT})")
print(f"Min-SNR gamma: {MIN_SNR_GAMMA}")
print(f"Resume: step {start_step}, epoch {start_epoch}")
model.train()
step = start_step
best = float("inf")
for ep in range(start_epoch, EPOCHS):
ep_loss = 0
ep_batches = 0
pbar = tqdm(loader, desc=f"E{ep + 1}")
for i, batch in enumerate(pbar):
latents = batch["latents"].to(DEVICE, non_blocking=True)
t5 = batch["t5_embeds"].to(DEVICE, non_blocking=True)
clip = batch["clip_pooled"].to(DEVICE, non_blocking=True)
masks = batch["masks"]
if masks is not None:
masks = masks.to(DEVICE, non_blocking=True)
B, C, H, W = latents.shape
data = latents.permute(0, 2, 3, 1).reshape(B, H * W, C)
noise = torch.randn_like(data)
if TEXT_DROPOUT > 0:
t5, clip, _ = apply_text_dropout(t5, clip, TEXT_DROPOUT)
t = torch.sigmoid(torch.randn(B, device=DEVICE))
t = flux_shift(t, s=SHIFT).to(DTYPE).clamp(1e-4, 1 - 1e-4)
t_expanded = t.view(B, 1, 1)
x_t = (1 - t_expanded) * noise + t_expanded * data
v_target = data - noise
img_ids = TinyFluxDeep.create_img_ids(B, H, W, DEVICE)
guidance = torch.rand(B, device=DEVICE, dtype=DTYPE) * 4 + 1
if GUIDANCE_DROPOUT > 0:
guide_mask = torch.rand(B, device=DEVICE) < GUIDANCE_DROPOUT
guidance[guide_mask] = 1.0
with torch.autocast("cuda", dtype=DTYPE):
v_pred = model(
hidden_states=x_t,
encoder_hidden_states=t5,
pooled_projections=clip,
timestep=t,
img_ids=img_ids,
guidance=guidance,
)
# Compute loss with min-SNR weighting
snr_weights = min_snr_weight(t) # [B]
# Unified loss: handles mask + SNR weighting
loss = masked_mse_loss(
v_pred, v_target,
mask=masks if USE_MASKED_LOSS else None,
fg_weight=FG_LOSS_WEIGHT,
bg_weight=BG_LOSS_WEIGHT,
snr_weights=snr_weights
) / GRAD_ACCUM
loss.backward()
if (i + 1) % GRAD_ACCUM == 0:
grad_norm = torch.nn.utils.clip_grad_norm_(trainable_params, 1.0)
opt.step()
sched.step()
opt.zero_grad(set_to_none=True)
ema.update(model)
step += 1
if step % LOG_EVERY == 0:
writer.add_scalar("train/loss", loss.item() * GRAD_ACCUM, step)
writer.add_scalar("train/lr", sched.get_last_lr()[0], step)
writer.add_scalar("train/grad_norm", grad_norm.item(), step)
if step % SAMPLE_EVERY == 0:
print(f"\n Generating samples at step {step}...")
images = generate_samples(model, SAMPLE_PROMPTS, num_steps=20, use_ema=True)
save_samples(images, SAMPLE_PROMPTS, step, SAMPLE_DIR)
if step % SAVE_EVERY == 0:
ckpt_path = os.path.join(CHECKPOINT_DIR, f"step_{step}.pt")
weights_path = save_checkpoint(model, opt, sched, step, ep, loss.item(), ckpt_path, ema_state=ema.state_dict())
if step % UPLOAD_EVERY == 0:
upload_checkpoint(weights_path, step)
ep_loss += loss.item() * GRAD_ACCUM
ep_batches += 1
pbar.set_postfix(loss=f"{loss.item() * GRAD_ACCUM:.4f}", step=step)
avg = ep_loss / max(ep_batches, 1)
print(f"Epoch {ep + 1} loss: {avg:.4f}")
if avg < best:
best = avg
weights_path = save_checkpoint(model, opt, sched, step, ep, avg, os.path.join(CHECKPOINT_DIR, "best.pt"), ema_state=ema.state_dict())
try:
api.upload_file(path_or_fileobj=weights_path, path_in_repo="model.safetensors", repo_id=HF_REPO)
except:
pass
print(f"\n✓ Training complete! Best loss: {best:.4f}")
writer.close() |