File size: 59,472 Bytes
2f5bd86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9c4369
2f5bd86
 
b9c4369
2f5bd86
b9c4369
2f5bd86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9c4369
2f5bd86
 
b9c4369
2f5bd86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9c4369
2f5bd86
 
 
b9c4369
2f5bd86
 
 
 
 
 
 
 
b9c4369
2f5bd86
 
 
 
 
 
 
 
b9c4369
2f5bd86
 
 
 
 
b9c4369
2f5bd86
 
 
 
b9c4369
2f5bd86
 
 
 
 
 
b9c4369
2f5bd86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5c7471
 
2f5bd86
a5c7471
 
 
 
 
 
 
 
 
 
 
2f5bd86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5c7471
 
2f5bd86
 
a5c7471
2f5bd86
a5c7471
 
 
 
 
 
 
2f5bd86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9c4369
 
 
 
 
2f5bd86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbbffae
 
 
 
 
 
b9c4369
bbbffae
 
 
 
 
 
 
 
 
 
2f5bd86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f7d369
a5c7471
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
"""
TinyFlux-Deep v4.1 with Dual Expert System

Integrates two complementary expert pathways:
- Lune: Trajectory guidance via vec modulation (global conditioning)
- Sol: Attention prior via temperature/spatial bias (structural guidance)

Key insight: Sol's geometric knowledge lives in its ATTENTION PATTERNS,
not its features. We extract attention statistics (locality, entropy, clustering)
and spatial importance maps to bias TinyFlux's weak 4-head attention.

This avoids the twin-tail paradox: V-pred (Sol) is fundamentally incompatible
with linear flow-matching (TinyFlux), so we don't inject features directly.
Instead, we translate Sol's structural understanding into attention biases.

Architecture:
- Lune ExpertPredictor: (t, clip) → expert_signal → ADD to vec
- Sol AttentionPrior: (t, clip) → temperature, spatial_mod → BIAS attention
- David-inspired gate: 70% geometric (timestep), 30% learned (content)

Based on TinyFlux-Deep: 15 double + 25 single blocks.
"""

__version__ = "4.1.0"

import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import json
from dataclasses import dataclass, asdict
from typing import Optional, Tuple, Dict, List, Union
from pathlib import Path


# =============================================================================
# Configuration
# =============================================================================

@dataclass
class TinyFluxConfig:
    """
    Configuration for TinyFlux-Deep v4.1 model.
    
    This config fully defines the model architecture and can be used to:
    1. Initialize a new model
    2. Convert checkpoints between versions  
    3. Validate checkpoint compatibility
    
    All dimension constraints are validated on creation.
    """

    # Core architecture
    hidden_size: int = 512
    num_attention_heads: int = 4
    attention_head_dim: int = 128

    in_channels: int = 16
    patch_size: int = 1

    joint_attention_dim: int = 768  # T5 sequence dim
    pooled_projection_dim: int = 768  # CLIP pooled dim

    num_double_layers: int = 15
    num_single_layers: int = 25

    mlp_ratio: float = 4.0
    axes_dims_rope: Tuple[int, int, int] = (16, 56, 56)

    # Lune expert predictor config (trajectory guidance)
    use_lune_expert: bool = True
    lune_expert_dim: int = 1280  # SD1.5 mid-block dimension
    lune_hidden_dim: int = 512
    lune_dropout: float = 0.1

    # Sol attention prior config (structural guidance)
    use_sol_prior: bool = True
    sol_spatial_size: int = 8  # Sol's feature map resolution
    sol_hidden_dim: int = 256
    sol_geometric_weight: float = 0.7  # David's 70/30 split

    # T5 enhancement config
    use_t5_vec: bool = True  # Add T5 pooled to vec pathway
    t5_pool_mode: str = "attention"  # "attention", "mean", "cls"

    # Loss config
    lune_distill_mode: str = "cosine"  # "hard", "soft", "cosine", "huber"
    use_huber_loss: bool = True
    huber_delta: float = 0.1

    # Legacy (for backward compat)
    use_expert_predictor: bool = True  # Maps to use_lune_expert
    expert_dim: int = 1280
    expert_hidden_dim: int = 512
    expert_dropout: float = 0.1
    guidance_embeds: bool = False

    def __post_init__(self):
        """Validate configuration constraints."""
        # Validate attention dimensions
        expected_hidden = self.num_attention_heads * self.attention_head_dim
        if self.hidden_size != expected_hidden:
            raise ValueError(
                f"hidden_size ({self.hidden_size}) must equal "
                f"num_attention_heads * attention_head_dim ({expected_hidden})"
            )

        # Validate RoPE dimensions  
        if isinstance(self.axes_dims_rope, list):
            self.axes_dims_rope = tuple(self.axes_dims_rope)
        
        rope_sum = sum(self.axes_dims_rope)
        if rope_sum != self.attention_head_dim:
            raise ValueError(
                f"sum(axes_dims_rope) ({rope_sum}) must equal "
                f"attention_head_dim ({self.attention_head_dim})"
            )

        # Validate sol_geometric_weight
        if not 0.0 <= self.sol_geometric_weight <= 1.0:
            raise ValueError(f"sol_geometric_weight must be in [0, 1], got {self.sol_geometric_weight}")

        # Legacy mapping
        if self.use_expert_predictor and not self.use_lune_expert:
            self.use_lune_expert = True
            self.lune_expert_dim = self.expert_dim
            self.lune_hidden_dim = self.expert_hidden_dim
            self.lune_dropout = self.expert_dropout

    def to_dict(self) -> Dict:
        """Convert to JSON-serializable dict."""
        d = asdict(self)
        d["axes_dims_rope"] = list(d["axes_dims_rope"])
        return d

    @classmethod
    def from_dict(cls, d: Dict) -> "TinyFluxConfig":
        """Create from dict, ignoring unknown keys."""
        known_fields = {f.name for f in cls.__dataclass_fields__.values()}
        filtered = {k: v for k, v in d.items() if k in known_fields and not k.startswith("_")}
        return cls(**filtered)

    @classmethod
    def from_json(cls, path: Union[str, Path]) -> "TinyFluxConfig":
        """Load config from JSON file."""
        with open(path) as f:
            d = json.load(f)
        return cls.from_dict(d)

    def save_json(self, path: Union[str, Path], metadata: Optional[Dict] = None):
        """Save config to JSON file with optional metadata."""
        d = self.to_dict()
        if metadata:
            d["_metadata"] = metadata
        with open(path, "w") as f:
            json.dump(d, f, indent=2)

    def validate_checkpoint(self, state_dict: Dict[str, torch.Tensor]) -> List[str]:
        """
        Validate that a checkpoint matches this config.
        
        Returns list of warnings (empty if perfect match).
        """
        warnings = []
        
        # Check double block count
        max_double = 0
        for key in state_dict:
            if key.startswith("double_blocks."):
                idx = int(key.split(".")[1])
                max_double = max(max_double, idx + 1)
        if max_double != self.num_double_layers:
            warnings.append(f"double_blocks: checkpoint has {max_double}, config expects {self.num_double_layers}")
        
        # Check single block count
        max_single = 0
        for key in state_dict:
            if key.startswith("single_blocks."):
                idx = int(key.split(".")[1])
                max_single = max(max_single, idx + 1)
        if max_single != self.num_single_layers:
            warnings.append(f"single_blocks: checkpoint has {max_single}, config expects {self.num_single_layers}")
        
        # Check hidden size from a known weight
        if "img_in.weight" in state_dict:
            w = state_dict["img_in.weight"]
            if w.shape[0] != self.hidden_size:
                warnings.append(f"hidden_size: checkpoint has {w.shape[0]}, config expects {self.hidden_size}")
        
        # Check for v4.1 components
        has_sol = any(k.startswith("sol_prior.") for k in state_dict)
        has_t5 = any(k.startswith("t5_pool.") for k in state_dict)
        has_lune = any(k.startswith("lune_predictor.") for k in state_dict)
        
        if self.use_sol_prior and not has_sol:
            warnings.append("config expects sol_prior but checkpoint missing it")
        if self.use_t5_vec and not has_t5:
            warnings.append("config expects t5_pool but checkpoint missing it")
        if self.use_lune_expert and not has_lune:
            warnings.append("config expects lune_predictor but checkpoint missing it")
        
        return warnings


# Backwards compatibility alias
TinyFluxDeepConfig = TinyFluxConfig


# =============================================================================
# Normalization
# =============================================================================

class RMSNorm(nn.Module):
    """Root Mean Square Layer Normalization."""

    def __init__(self, dim: int, eps: float = 1e-6, elementwise_affine: bool = True):
        super().__init__()
        self.eps = eps
        self.elementwise_affine = elementwise_affine
        if elementwise_affine:
            self.weight = nn.Parameter(torch.ones(dim))
        else:
            self.register_parameter('weight', None)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        norm = x.float().pow(2).mean(-1, keepdim=True).add(self.eps).rsqrt()
        out = (x * norm).type_as(x)
        if self.weight is not None:
            out = out * self.weight
        return out


# =============================================================================
# RoPE - Cached frequency buffers
# =============================================================================

class EmbedND(nn.Module):
    """Original TinyFlux RoPE with cached frequency buffers."""

    def __init__(self, theta: float = 10000.0, axes_dim: Tuple[int, int, int] = (16, 56, 56)):
        super().__init__()
        self.theta = theta
        self.axes_dim = axes_dim

        for i, dim in enumerate(axes_dim):
            freqs = 1.0 / (theta ** (torch.arange(0, dim, 2).float() / dim))
            self.register_buffer(f'freqs_{i}', freqs, persistent=True)

    def forward(self, ids: torch.Tensor) -> torch.Tensor:
        device = ids.device
        n_axes = ids.shape[-1]
        emb_list = []

        for i in range(n_axes):
            freqs = getattr(self, f'freqs_{i}').to(device)
            pos = ids[:, i].float()
            angles = pos.unsqueeze(-1) * freqs.unsqueeze(0)
            cos = angles.cos()
            sin = angles.sin()
            emb = torch.stack([cos, sin], dim=-1).flatten(-2)
            emb_list.append(emb)

        rope = torch.cat(emb_list, dim=-1)
        return rope.unsqueeze(1)


def apply_rotary_emb_old(x: torch.Tensor, freqs_cis: torch.Tensor) -> torch.Tensor:
    """Apply rotary embeddings (old interleaved format)."""
    freqs = freqs_cis.squeeze(1)
    cos = freqs[:, 0::2].repeat_interleave(2, dim=-1)
    sin = freqs[:, 1::2].repeat_interleave(2, dim=-1)
    cos = cos[None, None, :, :].to(x.device)
    sin = sin[None, None, :, :].to(x.device)
    x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1)
    x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(-2)
    return (x.float() * cos + x_rotated.float() * sin).to(x.dtype)


# =============================================================================
# Embeddings
# =============================================================================

class MLPEmbedder(nn.Module):
    """MLP for embedding scalars (timestep)."""

    def __init__(self, hidden_size: int):
        super().__init__()
        self.mlp = nn.Sequential(
            nn.Linear(256, hidden_size),
            nn.SiLU(),
            nn.Linear(hidden_size, hidden_size),
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        half_dim = 128
        emb = math.log(10000) / (half_dim - 1)
        emb = torch.exp(torch.arange(half_dim, device=x.device, dtype=x.dtype) * -emb)
        emb = x.unsqueeze(-1) * emb.unsqueeze(0)
        emb = torch.cat([emb.sin(), emb.cos()], dim=-1)
        return self.mlp(emb)


# =============================================================================
# Lune Expert Predictor (Trajectory Guidance → vec)
# =============================================================================

class LuneExpertPredictor(nn.Module):
    """
    Predicts Lune's trajectory features from (timestep_emb, CLIP_pooled).

    Lune learned rich textures and detail via rectified flow.
    Its mid-block features encode "how the denoising trajectory should flow."

    Output: expert_signal added to vec (global conditioning).
    """

    def __init__(
        self,
        time_dim: int = 512,
        clip_dim: int = 768,
        expert_dim: int = 1280,
        hidden_dim: int = 512,
        output_dim: int = 512,
        dropout: float = 0.1,
    ):
        super().__init__()

        self.expert_dim = expert_dim
        self.dropout = dropout

        # Input fusion
        self.input_proj = nn.Linear(time_dim + clip_dim, hidden_dim)

        # Predictor core
        self.predictor = nn.Sequential(
            nn.SiLU(),
            nn.Linear(hidden_dim, hidden_dim),
            nn.SiLU(),
            nn.Dropout(dropout),
            nn.Linear(hidden_dim, hidden_dim),
            nn.SiLU(),
            nn.Linear(hidden_dim, expert_dim),
        )

        # Project to vec dimension
        self.output_proj = nn.Sequential(
            nn.LayerNorm(expert_dim),
            nn.Linear(expert_dim, output_dim),
        )

        # Learnable gate - store in logit space so sigmoid gives 0.5 at init
        self.expert_gate = nn.Parameter(torch.tensor(0.0))  # sigmoid(0) = 0.5

        self._init_weights()

    def _init_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Linear):
                nn.init.xavier_uniform_(m.weight, gain=0.5)
                if m.bias is not None:
                    nn.init.zeros_(m.bias)

    def forward(
        self,
        time_emb: torch.Tensor,
        clip_pooled: torch.Tensor,
        real_expert_features: Optional[torch.Tensor] = None,
    ) -> Dict[str, torch.Tensor]:
        """
        Returns:
            expert_signal: [B, output_dim] - add to vec
            expert_pred: [B, expert_dim] - for distillation loss
        """
        combined = torch.cat([time_emb, clip_pooled], dim=-1)
        hidden = self.input_proj(combined)
        expert_pred = self.predictor(hidden)

        if real_expert_features is not None:
            expert_features = real_expert_features
            expert_used = 'real'
        else:
            expert_features = expert_pred
            expert_used = 'predicted'

        gate = torch.sigmoid(self.expert_gate)
        expert_signal = gate * self.output_proj(expert_features)

        return {
            'expert_signal': expert_signal,
            'expert_pred': expert_pred,
            'expert_used': expert_used,
        }


# =============================================================================
# Sol Attention Prior (Structural Guidance → Attention Bias)
# =============================================================================

class SolAttentionPrior(nn.Module):
    """
    Predicts Sol's attention behavior from (timestep_emb, CLIP_pooled).

    Sol learned geometric structure via DDPM + David assessment.
    Its value isn't in features, but in ATTENTION PATTERNS:
    - locality: how local vs global is attention?
    - entropy: how focused vs diffuse?
    - clustering: how structured vs uniform?
    - spatial_importance: WHERE does structure exist?

    Output: Temperature scaling and Q/K modulation for TinyFlux attention.

    Follows David's philosophy: 70% geometric routing (timestep-based),
    30% learned routing (content-based).
    """

    def __init__(
        self,
        time_dim: int = 512,
        clip_dim: int = 768,
        hidden_dim: int = 256,
        num_heads: int = 4,
        spatial_size: int = 8,
        geometric_weight: float = 0.7,
    ):
        super().__init__()

        self.num_heads = num_heads
        self.spatial_size = spatial_size
        self.geometric_weight = geometric_weight

        # Statistics predictor: (t, clip) → [locality, entropy, clustering]
        self.stat_predictor = nn.Sequential(
            nn.Linear(time_dim + clip_dim, hidden_dim),
            nn.SiLU(),
            nn.Linear(hidden_dim, hidden_dim),
            nn.SiLU(),
            nn.Linear(hidden_dim, 3),
        )

        # Spatial importance predictor: (t, clip) → [H, W] importance map
        self.spatial_predictor = nn.Sequential(
            nn.Linear(time_dim + clip_dim, hidden_dim),
            nn.SiLU(),
            nn.Linear(hidden_dim, hidden_dim),
            nn.SiLU(),
            nn.Linear(hidden_dim, spatial_size * spatial_size),
        )

        # Convert statistics → per-head temperature
        self.stat_to_temperature = nn.Sequential(
            nn.Linear(3, hidden_dim // 2),
            nn.SiLU(),
            nn.Linear(hidden_dim // 2, num_heads),
            nn.Softplus(),  # Positive temperatures
        )

        # Convert spatial → Q/K modulation
        # Zero-init: starts as identity (no modulation)
        self.spatial_to_qk_scale = nn.Linear(1, num_heads)
        nn.init.zeros_(self.spatial_to_qk_scale.weight)
        nn.init.ones_(self.spatial_to_qk_scale.bias)

        # Learnable blend between geometric and predicted
        # Store in logit space so sigmoid(x) = geometric_weight at init
        self.blend_gate = nn.Parameter(self._to_logit(geometric_weight))

        self._init_weights()

    @staticmethod
    def _to_logit(p: float) -> torch.Tensor:
        """Convert probability to logit for proper sigmoid init."""
        p = max(1e-4, min(p, 1 - 1e-4))
        return torch.tensor(math.log(p / (1 - p)))

    def _init_weights(self):
        for m in [self.stat_predictor, self.spatial_predictor, self.stat_to_temperature]:
            for layer in m:
                if isinstance(layer, nn.Linear):
                    nn.init.xavier_uniform_(layer.weight, gain=0.5)
                    if layer.bias is not None:
                        nn.init.zeros_(layer.bias)

    def geometric_temperature(self, t_normalized: torch.Tensor) -> torch.Tensor:
        """
        Timestep-based temperature prior.

        Early (high t): Higher temperature → softer, more global attention
        Late (low t): Lower temperature → sharper, more local attention

        This matches how denoising naturally progresses:
        - Early: global structure decisions
        - Late: local detail refinement
        """
        B = t_normalized.shape[0]

        # Base temperature: 1.0 at t=0, 2.0 at t=1
        base_temp = 1.0 + t_normalized  # [B]

        # Per-head variation (some heads more local, some more global)
        head_bias = torch.linspace(-0.2, 0.2, self.num_heads, device=t_normalized.device)

        # [B, num_heads]
        temperatures = base_temp.unsqueeze(-1) + head_bias.unsqueeze(0)
        return temperatures.clamp(min=0.5, max=3.0)

    def geometric_spatial(self, t_normalized: torch.Tensor) -> torch.Tensor:
        """
        Timestep-based spatial prior.

        Early (high t): Uniform importance (everything matters for structure)
        Late (low t): Center-biased (details typically in center)

        Returns: [B, H, W] spatial importance
        """
        B = t_normalized.shape[0]
        H = W = self.spatial_size
        device = t_normalized.device

        # Create center-biased gaussian
        y = torch.linspace(-1, 1, H, device=device)
        x = torch.linspace(-1, 1, W, device=device)
        yy, xx = torch.meshgrid(y, x, indexing='ij')
        center_dist = (xx**2 + yy**2).sqrt()
        center_bias = torch.exp(-center_dist * 2)  # Gaussian centered

        # Blend: high t → uniform, low t → center-biased
        uniform = torch.ones(H, W, device=device)

        # t as blend factor: high t (1.0) → uniform, low t (0.0) → center
        blend = t_normalized.view(B, 1, 1)
        spatial = blend * uniform + (1 - blend) * center_bias.unsqueeze(0)

        return spatial

    def forward(
        self,
        time_emb: torch.Tensor,
        clip_pooled: torch.Tensor,
        t_normalized: torch.Tensor,
        real_stats: Optional[torch.Tensor] = None,
        real_spatial: Optional[torch.Tensor] = None,
    ) -> Dict[str, torch.Tensor]:
        """
        Args:
            time_emb: [B, time_dim]
            clip_pooled: [B, clip_dim]
            t_normalized: [B] timestep in [0, 1]
            real_stats: [B, 3] real Sol statistics (training)
            real_spatial: [B, H, W] real Sol spatial importance (training)

        Returns:
            temperature: [B, num_heads] - attention temperature per head
            spatial_mod: [B, num_heads, N] - Q/K modulation per position
            pred_stats: [B, 3] - for distillation loss
            pred_spatial: [B, H, W] - for distillation loss
        """
        B = time_emb.shape[0]
        device = time_emb.device

        combined = torch.cat([time_emb, clip_pooled], dim=-1)

        # === Predict statistics ===
        pred_stats = self.stat_predictor(combined)  # [B, 3]

        # === Predict spatial importance ===
        pred_spatial = self.spatial_predictor(combined)  # [B, 64]
        pred_spatial = pred_spatial.view(B, self.spatial_size, self.spatial_size)
        pred_spatial = torch.sigmoid(pred_spatial)  # [0, 1] importance

        # === Geometric priors ===
        geo_temperature = self.geometric_temperature(t_normalized)
        geo_spatial = self.geometric_spatial(t_normalized)

        # === Learned components ===
        # Use real values if provided (training), else predicted (inference)
        stats = real_stats if real_stats is not None else pred_stats
        spatial = real_spatial if real_spatial is not None else pred_spatial

        learned_temperature = self.stat_to_temperature(stats)  # [B, num_heads]

        # === Blend geometric and learned (David's 70/30) ===
        blend = torch.sigmoid(self.blend_gate)  # Learnable, initialized to 0.7

        temperature = blend * geo_temperature + (1 - blend) * learned_temperature

        # For spatial: blend then convert to Q/K modulation
        blended_spatial = blend * geo_spatial + (1 - blend) * spatial  # [B, H, W]

        return {
            'temperature': temperature,           # [B, num_heads]
            'spatial_importance': blended_spatial,  # [B, H, W] at sol resolution
            'pred_stats': pred_stats,             # [B, 3] for distillation
            'pred_spatial': pred_spatial,         # [B, H, W] for distillation
        }


# =============================================================================
# AdaLayerNorm
# =============================================================================

class AdaLayerNormZero(nn.Module):
    """AdaLN-Zero for double-stream blocks (6 params)."""

    def __init__(self, hidden_size: int):
        super().__init__()
        self.silu = nn.SiLU()
        self.linear = nn.Linear(hidden_size, 6 * hidden_size, bias=True)
        self.norm = RMSNorm(hidden_size)

    def forward(self, x: torch.Tensor, emb: torch.Tensor):
        emb_out = self.linear(self.silu(emb))
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb_out.chunk(6, dim=-1)
        x = self.norm(x) * (1 + scale_msa.unsqueeze(1)) + shift_msa.unsqueeze(1)
        return x, gate_msa, shift_mlp, scale_mlp, gate_mlp


class AdaLayerNormZeroSingle(nn.Module):
    """AdaLN-Zero for single-stream blocks (3 params)."""

    def __init__(self, hidden_size: int):
        super().__init__()
        self.silu = nn.SiLU()
        self.linear = nn.Linear(hidden_size, 3 * hidden_size, bias=True)
        self.norm = RMSNorm(hidden_size)

    def forward(self, x: torch.Tensor, emb: torch.Tensor):
        emb_out = self.linear(self.silu(emb))
        shift, scale, gate = emb_out.chunk(3, dim=-1)
        x = self.norm(x) * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
        return x, gate


# =============================================================================
# Attention with Sol Prior Support
# =============================================================================

class Attention(nn.Module):
    """
    Multi-head attention with optional Sol attention prior.

    Sol prior provides:
    - temperature: per-head attention sharpness
    - spatial_mod: per-position Q/K scaling
    """

    def __init__(
        self,
        hidden_size: int,
        num_heads: int,
        head_dim: int,
        use_bias: bool = False,
        sol_spatial_size: int = 8,
    ):
        super().__init__()
        self.num_heads = num_heads
        self.head_dim = head_dim
        self.scale = head_dim ** -0.5
        self.sol_spatial_size = sol_spatial_size

        self.qkv = nn.Linear(hidden_size, 3 * num_heads * head_dim, bias=use_bias)
        self.out_proj = nn.Linear(num_heads * head_dim, hidden_size, bias=use_bias)

        # Sol spatial → per-head Q/K modulation
        # Zero-init weight AND bias so exp(0)=1 at init (true identity)
        self.spatial_to_mod = nn.Conv2d(1, num_heads, kernel_size=1, bias=True)
        nn.init.zeros_(self.spatial_to_mod.weight)
        nn.init.zeros_(self.spatial_to_mod.bias)

    def forward(
        self,
        x: torch.Tensor,
        rope: Optional[torch.Tensor] = None,
        sol_temperature: Optional[torch.Tensor] = None,
        sol_spatial: Optional[torch.Tensor] = None,
        spatial_size: Optional[Tuple[int, int]] = None,
        num_txt_tokens: int = 0,
    ) -> torch.Tensor:
        """
        Args:
            x: [B, N, hidden_size]
            rope: RoPE embeddings
            sol_temperature: [B, num_heads] - attention temperature per head
            sol_spatial: [B, H_sol, W_sol] - spatial importance from Sol
            spatial_size: (H, W) of the image tokens for upsampling sol_spatial
            num_txt_tokens: number of text tokens at start of sequence (for single-stream)
        """
        B, N, _ = x.shape

        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim)
        q, k, v = qkv.permute(2, 0, 3, 1, 4)  # [B, heads, N, head_dim]

        if rope is not None:
            q = apply_rotary_emb_old(q, rope)
            k = apply_rotary_emb_old(k, rope)

        # === Sol Spatial Modulation ===
        if sol_spatial is not None and spatial_size is not None:
            H, W = spatial_size
            N_img = H * W

            # Upsample Sol spatial to match image token resolution
            sol_up = F.interpolate(
                sol_spatial.unsqueeze(1),  # [B, 1, H_sol, W_sol]
                size=(H, W),
                mode='bilinear',
                align_corners=False,
            )  # [B, 1, H, W]

            # Convert to per-head modulation for IMAGE tokens only
            img_mod = self.spatial_to_mod(sol_up)  # [B, heads, H, W]
            img_mod = img_mod.reshape(B, self.num_heads, N_img)  # [B, heads, N_img]

            # exp(0) = 1 at init (true identity), learns to scale up/down
            img_mod = torch.exp(img_mod.clamp(-2, 2))  # Clamp for stability

            # For single-stream: prepend ones for text tokens (no modulation)
            if num_txt_tokens > 0:
                txt_mod = torch.ones(B, self.num_heads, num_txt_tokens, device=x.device, dtype=img_mod.dtype)
                mod = torch.cat([txt_mod, img_mod], dim=2)  # [B, heads, N_txt + N_img]
            else:
                mod = img_mod

            # Modulate Q and K (amplify at important positions)
            q = q * mod.unsqueeze(-1)  # [B, heads, N, head_dim]
            k = k * mod.unsqueeze(-1)

        # === Compute attention with SDPA (Flash Attention) ===
        # Sol temperature is applied via scale modification
        if sol_temperature is not None:
            # Average temperature across heads for SDPA scale
            # temperature: [B, num_heads] → scalar per sample (SDPA limitation)
            temp = sol_temperature.mean(dim=1, keepdim=True).clamp(min=0.1)  # [B, 1]
            effective_scale = self.scale / temp.unsqueeze(-1).unsqueeze(-1)  # [B, 1, 1, 1]
            # Pre-scale Q instead of post-scale scores (mathematically equivalent)
            q = q * (effective_scale.sqrt())
            k = k * (effective_scale.sqrt())
            out = F.scaled_dot_product_attention(q, k, v, scale=1.0)
        else:
            out = F.scaled_dot_product_attention(q, k, v, scale=self.scale)
        
        out = out.transpose(1, 2).reshape(B, N, -1)

        return self.out_proj(out)


class JointAttention(nn.Module):
    """
    Joint attention for double-stream blocks with Sol prior support.

    Image tokens get Sol modulation, text tokens don't.
    """

    def __init__(
        self,
        hidden_size: int,
        num_heads: int,
        head_dim: int,
        use_bias: bool = False,
        sol_spatial_size: int = 8,
    ):
        super().__init__()
        self.num_heads = num_heads
        self.head_dim = head_dim
        self.scale = head_dim ** -0.5
        self.sol_spatial_size = sol_spatial_size

        self.txt_qkv = nn.Linear(hidden_size, 3 * num_heads * head_dim, bias=use_bias)
        self.img_qkv = nn.Linear(hidden_size, 3 * num_heads * head_dim, bias=use_bias)

        self.txt_out = nn.Linear(num_heads * head_dim, hidden_size, bias=use_bias)
        self.img_out = nn.Linear(num_heads * head_dim, hidden_size, bias=use_bias)

        # Sol spatial modulation for image tokens
        # Zero-init so exp(0)=1 at init (true identity)
        self.spatial_to_mod = nn.Conv2d(1, num_heads, kernel_size=1, bias=True)
        nn.init.zeros_(self.spatial_to_mod.weight)
        nn.init.zeros_(self.spatial_to_mod.bias)

    def forward(
        self,
        txt: torch.Tensor,
        img: torch.Tensor,
        rope: Optional[torch.Tensor] = None,
        sol_temperature: Optional[torch.Tensor] = None,
        sol_spatial: Optional[torch.Tensor] = None,
        spatial_size: Optional[Tuple[int, int]] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        B, L, _ = txt.shape
        _, N, _ = img.shape

        txt_qkv = self.txt_qkv(txt).reshape(B, L, 3, self.num_heads, self.head_dim)
        img_qkv = self.img_qkv(img).reshape(B, N, 3, self.num_heads, self.head_dim)

        txt_q, txt_k, txt_v = txt_qkv.permute(2, 0, 3, 1, 4)
        img_q, img_k, img_v = img_qkv.permute(2, 0, 3, 1, 4)

        if rope is not None:
            img_q = apply_rotary_emb_old(img_q, rope)
            img_k = apply_rotary_emb_old(img_k, rope)

        # === Sol Spatial Modulation (image only) ===
        if sol_spatial is not None and spatial_size is not None:
            H, W = spatial_size

            sol_up = F.interpolate(
                sol_spatial.unsqueeze(1),
                size=(H, W),
                mode='bilinear',
                align_corners=False,
            )

            mod = self.spatial_to_mod(sol_up)
            mod = mod.reshape(B, self.num_heads, H * W)
            mod = torch.exp(mod.clamp(-2, 2))  # exp(0)=1 at init, clamp for stability

            img_q = img_q * mod.unsqueeze(-1)
            img_k = img_k * mod.unsqueeze(-1)

        # Concatenate for joint attention
        k = torch.cat([txt_k, img_k], dim=2)
        v = torch.cat([txt_v, img_v], dim=2)

        # Text attention with SDPA (no Sol modulation)
        txt_out = F.scaled_dot_product_attention(txt_q, k, v, scale=self.scale)
        txt_out = txt_out.transpose(1, 2).reshape(B, L, -1)

        # Image attention with SDPA (Sol temperature via scale modification)
        if sol_temperature is not None:
            temp = sol_temperature.mean(dim=1, keepdim=True).clamp(min=0.1)
            effective_scale = self.scale / temp.unsqueeze(-1).unsqueeze(-1)
            img_q_scaled = img_q * (effective_scale.sqrt())
            k_scaled = k * (effective_scale.sqrt())
            img_out = F.scaled_dot_product_attention(img_q_scaled, k_scaled, v, scale=1.0)
        else:
            img_out = F.scaled_dot_product_attention(img_q, k, v, scale=self.scale)
        img_out = img_out.transpose(1, 2).reshape(B, N, -1)

        return self.txt_out(txt_out), self.img_out(img_out)


# =============================================================================
# MLP
# =============================================================================

class MLP(nn.Module):
    """Feed-forward network with GELU activation."""

    def __init__(self, hidden_size: int, mlp_ratio: float = 4.0):
        super().__init__()
        mlp_hidden = int(hidden_size * mlp_ratio)
        self.fc1 = nn.Linear(hidden_size, mlp_hidden, bias=True)
        self.act = nn.GELU(approximate='tanh')
        self.fc2 = nn.Linear(mlp_hidden, hidden_size, bias=True)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.fc2(self.act(self.fc1(x)))


# =============================================================================
# Transformer Blocks
# =============================================================================

class DoubleStreamBlock(nn.Module):
    """Double-stream transformer block with Sol prior support."""

    def __init__(self, config: TinyFluxConfig):
        super().__init__()
        hidden = config.hidden_size
        heads = config.num_attention_heads
        head_dim = config.attention_head_dim

        self.img_norm1 = AdaLayerNormZero(hidden)
        self.txt_norm1 = AdaLayerNormZero(hidden)
        self.attn = JointAttention(
            hidden, heads, head_dim,
            use_bias=False,
            sol_spatial_size=config.sol_spatial_size,
        )
        self.img_norm2 = RMSNorm(hidden)
        self.txt_norm2 = RMSNorm(hidden)
        self.img_mlp = MLP(hidden, config.mlp_ratio)
        self.txt_mlp = MLP(hidden, config.mlp_ratio)

    def forward(
        self,
        txt: torch.Tensor,
        img: torch.Tensor,
        vec: torch.Tensor,
        rope: Optional[torch.Tensor] = None,
        sol_temperature: Optional[torch.Tensor] = None,
        sol_spatial: Optional[torch.Tensor] = None,
        spatial_size: Optional[Tuple[int, int]] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:

        img_normed, img_gate_msa, img_shift_mlp, img_scale_mlp, img_gate_mlp = self.img_norm1(img, vec)
        txt_normed, txt_gate_msa, txt_shift_mlp, txt_scale_mlp, txt_gate_mlp = self.txt_norm1(txt, vec)

        txt_attn_out, img_attn_out = self.attn(
            txt_normed, img_normed, rope,
            sol_temperature=sol_temperature,
            sol_spatial=sol_spatial,
            spatial_size=spatial_size,
        )

        txt = txt + txt_gate_msa.unsqueeze(1) * txt_attn_out
        img = img + img_gate_msa.unsqueeze(1) * img_attn_out

        txt_mlp_in = self.txt_norm2(txt) * (1 + txt_scale_mlp.unsqueeze(1)) + txt_shift_mlp.unsqueeze(1)
        img_mlp_in = self.img_norm2(img) * (1 + img_scale_mlp.unsqueeze(1)) + img_shift_mlp.unsqueeze(1)

        txt = txt + txt_gate_mlp.unsqueeze(1) * self.txt_mlp(txt_mlp_in)
        img = img + img_gate_mlp.unsqueeze(1) * self.img_mlp(img_mlp_in)

        return txt, img


class SingleStreamBlock(nn.Module):
    """Single-stream transformer block with Sol prior support."""

    def __init__(self, config: TinyFluxConfig):
        super().__init__()
        hidden = config.hidden_size
        heads = config.num_attention_heads
        head_dim = config.attention_head_dim

        self.norm = AdaLayerNormZeroSingle(hidden)
        self.attn = Attention(
            hidden, heads, head_dim,
            use_bias=False,
            sol_spatial_size=config.sol_spatial_size,
        )
        self.mlp = MLP(hidden, config.mlp_ratio)
        self.norm2 = RMSNorm(hidden)

    def forward(
        self,
        txt: torch.Tensor,
        img: torch.Tensor,
        vec: torch.Tensor,
        rope: Optional[torch.Tensor] = None,
        sol_temperature: Optional[torch.Tensor] = None,
        sol_spatial: Optional[torch.Tensor] = None,
        spatial_size: Optional[Tuple[int, int]] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        L = txt.shape[1]  # Number of text tokens
        x = torch.cat([txt, img], dim=1)
        x_normed, gate = self.norm(x, vec)

        # For single stream: text tokens come first, then image tokens
        # Sol spatial only applies to image portion
        x = x + gate.unsqueeze(1) * self.attn(
            x_normed, rope,
            sol_temperature=sol_temperature,
            sol_spatial=sol_spatial,
            spatial_size=spatial_size,
            num_txt_tokens=L,  # Tell attention how many text tokens to skip
        )
        x = x + self.mlp(self.norm2(x))
        txt, img = x.split([L, x.shape[1] - L], dim=1)
        return txt, img


# =============================================================================
# Main Model
# =============================================================================

class TinyFluxDeep(nn.Module):
    """
    TinyFlux-Deep v4.1 with Dual Expert System.

    Lune: Trajectory guidance → vec modulation (global conditioning)
    Sol: Attention prior → temperature/spatial (structural guidance)
    """

    def __init__(self, config: Optional[TinyFluxConfig] = None):
        super().__init__()
        self.config = config or TinyFluxConfig()
        cfg = self.config

        # Input projections
        self.img_in = nn.Linear(cfg.in_channels, cfg.hidden_size, bias=True)
        self.txt_in = nn.Linear(cfg.joint_attention_dim, cfg.hidden_size, bias=True)

        # Conditioning
        self.time_in = MLPEmbedder(cfg.hidden_size)
        self.vector_in = nn.Sequential(
            nn.SiLU(),
            nn.Linear(cfg.pooled_projection_dim, cfg.hidden_size, bias=True)
        )

        # === T5 Enhancement: Add T5 to vec pathway ===
        if cfg.use_t5_vec:
            self.t5_pool = nn.Sequential(
                nn.Linear(cfg.joint_attention_dim, cfg.hidden_size),
                nn.SiLU(),
                nn.Linear(cfg.hidden_size, cfg.hidden_size),
            )
            # Learnable balance: sigmoid(0) = 0.5 (equal weight at init)
            self.text_balance = nn.Parameter(torch.tensor(0.0))
        else:
            self.t5_pool = None
            self.text_balance = None

        # === Lune Expert Predictor (trajectory → vec) ===
        if cfg.use_lune_expert:
            self.lune_predictor = LuneExpertPredictor(
                time_dim=cfg.hidden_size,
                clip_dim=cfg.pooled_projection_dim,
                expert_dim=cfg.lune_expert_dim,
                hidden_dim=cfg.lune_hidden_dim,
                output_dim=cfg.hidden_size,
                dropout=cfg.lune_dropout,
            )
        else:
            self.lune_predictor = None

        # === Sol Attention Prior (structure → attention bias) ===
        if cfg.use_sol_prior:
            self.sol_prior = SolAttentionPrior(
                time_dim=cfg.hidden_size,
                clip_dim=cfg.pooled_projection_dim,
                hidden_dim=cfg.sol_hidden_dim,
                num_heads=cfg.num_attention_heads,
                spatial_size=cfg.sol_spatial_size,
                geometric_weight=cfg.sol_geometric_weight,
            )
        else:
            self.sol_prior = None

        # Legacy guidance
        if cfg.guidance_embeds:
            self.guidance_in = MLPEmbedder(cfg.hidden_size)
        else:
            self.guidance_in = None

        # RoPE
        self.rope = EmbedND(theta=10000.0, axes_dim=cfg.axes_dims_rope)

        # Transformer blocks
        self.double_blocks = nn.ModuleList([
            DoubleStreamBlock(cfg) for _ in range(cfg.num_double_layers)
        ])
        self.single_blocks = nn.ModuleList([
            SingleStreamBlock(cfg) for _ in range(cfg.num_single_layers)
        ])

        # Output
        self.final_norm = RMSNorm(cfg.hidden_size)
        self.final_linear = nn.Linear(cfg.hidden_size, cfg.in_channels, bias=True)

        self._init_weights()

    def _init_weights(self):
        def _init(module):
            if isinstance(module, nn.Linear):
                nn.init.xavier_uniform_(module.weight)
                if module.bias is not None:
                    nn.init.zeros_(module.bias)
        self.apply(_init)
        nn.init.zeros_(self.final_linear.weight)

    @property
    def expert_predictor(self):
        """Legacy API: alias for lune_predictor."""
        return self.lune_predictor

    def forward(
        self,
        hidden_states: torch.Tensor,
        encoder_hidden_states: torch.Tensor,
        pooled_projections: torch.Tensor,
        timestep: torch.Tensor,
        img_ids: torch.Tensor,
        txt_ids: Optional[torch.Tensor] = None,
        guidance: Optional[torch.Tensor] = None,
        # Lune inputs
        lune_features: Optional[torch.Tensor] = None,
        # Sol inputs
        sol_stats: Optional[torch.Tensor] = None,
        sol_spatial: Optional[torch.Tensor] = None,
        # Legacy API
        expert_features: Optional[torch.Tensor] = None,
        return_expert_pred: bool = False,
    ) -> torch.Tensor:
        """
        Forward pass.

        Args:
            hidden_states: [B, N, C] - image latents (flattened)
            encoder_hidden_states: [B, L, D] - T5 text embeddings
            pooled_projections: [B, D] - CLIP pooled features
            timestep: [B] - diffusion timestep in [0, 1]
            img_ids: [N, 3] or [B, N, 3] - image position IDs
            txt_ids: [L, 3] or [B, L, 3] - text position IDs (optional)
            guidance: [B] - legacy guidance scale
            lune_features: [B, 1280] - real Lune features (training)
            sol_stats: [B, 3] - real Sol statistics (training)
            sol_spatial: [B, H, W] - real Sol spatial importance (training)
            expert_features: [B, 1280] - legacy API, maps to lune_features
            return_expert_pred: if True, return (output, expert_info) tuple

        Returns:
            output: [B, N, C] - predicted velocity
            expert_info: dict (if return_expert_pred=True)
        """
        B = hidden_states.shape[0]
        L = encoder_hidden_states.shape[1]
        N = hidden_states.shape[1]

        # Infer spatial dimensions
        H = W = int(math.sqrt(N))
        assert H * W == N, f"N={N} is not a perfect square, cannot infer spatial size. Pass explicit spatial_size."
        spatial_size = (H, W)

        # Legacy API mapping
        if expert_features is not None and lune_features is None:
            lune_features = expert_features

        # Ensure consistent dtype (text encoders often output float32)
        model_dtype = self.img_in.weight.dtype
        hidden_states = hidden_states.to(dtype=model_dtype)
        encoder_hidden_states = encoder_hidden_states.to(dtype=model_dtype)
        pooled_projections = pooled_projections.to(dtype=model_dtype)
        timestep = timestep.to(dtype=model_dtype)
        
        # Cast optional expert inputs if provided
        if lune_features is not None:
            lune_features = lune_features.to(dtype=model_dtype)
        if sol_stats is not None:
            sol_stats = sol_stats.to(dtype=model_dtype)
        if sol_spatial is not None:
            sol_spatial = sol_spatial.to(dtype=model_dtype)
        if guidance is not None:
            guidance = guidance.to(dtype=model_dtype)

        # Input projections
        img = self.img_in(hidden_states)
        txt = self.txt_in(encoder_hidden_states)

        # Conditioning: time + text
        time_emb = self.time_in(timestep)
        clip_vec = self.vector_in(pooled_projections)

        # === T5 Enhancement: Pool T5 and add to vec ===
        t5_pooled = None
        if self.t5_pool is not None:
            # Attention-weighted pooling of T5 sequence
            t5_attn_logits = encoder_hidden_states.mean(dim=-1)  # [B, L]
            t5_attn = F.softmax(t5_attn_logits, dim=-1)  # [B, L]
            t5_pooled = (encoder_hidden_states * t5_attn.unsqueeze(-1)).sum(dim=1)  # [B, D]
            t5_vec = self.t5_pool(t5_pooled)

            # Balanced combination of CLIP and T5
            balance = torch.sigmoid(self.text_balance)
            text_vec = balance * clip_vec + (1 - balance) * t5_vec
        else:
            text_vec = clip_vec

        vec = time_emb + text_vec

        # === Lune: trajectory guidance → vec ===
        lune_info = None
        if self.lune_predictor is not None:
            lune_out = self.lune_predictor(
                time_emb=time_emb,
                clip_pooled=pooled_projections,
                real_expert_features=lune_features,
            )
            vec = vec + lune_out['expert_signal']
            lune_info = lune_out

        # === Sol: attention prior → temperature, spatial ===
        sol_temperature = None
        sol_spatial_blend = None
        sol_info = None

        if self.sol_prior is not None:
            sol_out = self.sol_prior(
                time_emb=time_emb,
                clip_pooled=pooled_projections,
                t_normalized=timestep,
                real_stats=sol_stats,
                real_spatial=sol_spatial,
            )
            sol_temperature = sol_out['temperature']
            sol_spatial_blend = sol_out['spatial_importance']
            sol_info = sol_out

        # Legacy guidance (fallback)
        if self.guidance_in is not None and guidance is not None:
            vec = vec + self.guidance_in(guidance)

        # Handle img_ids shape
        if img_ids.ndim == 3:
            img_ids = img_ids[0]
        img_rope = self.rope(img_ids)

        # Double-stream blocks
        for block in self.double_blocks:
            txt, img = block(
                txt, img, vec, img_rope,
                sol_temperature=sol_temperature,
                sol_spatial=sol_spatial_blend,
                spatial_size=spatial_size,
            )

        # Build full sequence RoPE for single-stream
        if txt_ids is None:
            txt_ids = torch.zeros(L, 3, device=img_ids.device, dtype=img_ids.dtype)
        elif txt_ids.ndim == 3:
            txt_ids = txt_ids[0]

        all_ids = torch.cat([txt_ids, img_ids], dim=0)
        full_rope = self.rope(all_ids)

        # Single-stream blocks
        for block in self.single_blocks:
            txt, img = block(
                txt, img, vec, full_rope,
                sol_temperature=sol_temperature,
                sol_spatial=sol_spatial_blend,
                spatial_size=spatial_size,
            )

        # Output
        img = self.final_norm(img)
        output = self.final_linear(img)

        if return_expert_pred:
            expert_info = {
                'lune': lune_info,
                'sol': sol_info,
                # Legacy API
                'expert_signal': lune_info['expert_signal'] if lune_info else None,
                'expert_pred': lune_info['expert_pred'] if lune_info else None,
                'expert_used': lune_info['expert_used'] if lune_info else None,
            }
            return output, expert_info
        return output

    def compute_loss(
        self,
        output: torch.Tensor,
        target: torch.Tensor,
        expert_info: Optional[Dict] = None,
        lune_features: Optional[torch.Tensor] = None,
        sol_stats: Optional[torch.Tensor] = None,
        sol_spatial: Optional[torch.Tensor] = None,
        lune_weight: float = 0.1,
        sol_weight: float = 0.05,
        # New options
        use_huber: bool = True,
        huber_delta: float = 0.1,
        lune_distill_mode: str = "cosine",
        spatial_weighting: bool = True,
    ) -> Dict[str, torch.Tensor]:
        """
        Compute combined loss with Huber and soft distillation.

        Args:
            output: [B, N, C] model prediction
            target: [B, N, C] flow matching target (data - noise)
            expert_info: dict from forward pass
            lune_features: [B, 1280] real Lune features
            sol_stats: [B, 3] real Sol statistics
            sol_spatial: [B, H, W] real Sol spatial importance
            lune_weight: weight for Lune distillation loss
            sol_weight: weight for Sol distillation loss
            use_huber: use Huber loss instead of MSE for main loss
            huber_delta: Huber delta (smaller = tighter MSE behavior)
            lune_distill_mode: "hard" (MSE), "cosine" (directional), "soft" (temp-scaled)
            spatial_weighting: weight main loss by Sol spatial importance

        Returns:
            dict with losses
        """
        device = output.device
        B, N, C = output.shape

        # === Main Flow Matching Loss ===
        if use_huber:
            # Huber loss: MSE for small errors, MAE for large (robust to outliers)
            main_loss_unreduced = F.huber_loss(
                output, target,
                reduction='none',
                delta=huber_delta
            )  # [B, N, C]
        else:
            main_loss_unreduced = (output - target).pow(2)  # [B, N, C]

        # === Sol Spatial Weighting ===
        if spatial_weighting and sol_spatial is not None:
            # Upsample Sol spatial to match token resolution
            H = W = int(math.sqrt(N))
            sol_weight_map = F.interpolate(
                sol_spatial.unsqueeze(1),  # [B, 1, H_sol, W_sol]
                size=(H, W),
                mode='bilinear',
                align_corners=False,
            ).reshape(B, N, 1)  # [B, N, 1]

            # Normalize to mean=1 (doesn't change loss scale, just distribution)
            sol_weight_map = sol_weight_map / (sol_weight_map.mean() + 1e-6)

            # Apply spatial weighting
            main_loss_unreduced = main_loss_unreduced * sol_weight_map

        main_loss = main_loss_unreduced.mean()

        losses = {
            'main': main_loss,
            'lune_distill': torch.tensor(0.0, device=device),
            'sol_stat_distill': torch.tensor(0.0, device=device),
            'sol_spatial_distill': torch.tensor(0.0, device=device),
            'total': main_loss,
        }

        if expert_info is None:
            return losses

        # === Lune Distillation (Soft/Directional) ===
        if expert_info.get('lune') and lune_features is not None:
            lune_pred = expert_info['lune']['expert_pred']

            if lune_distill_mode == "cosine":
                # Directional matching - Lune is a guide, not exact target
                # "Go in the same direction" without forcing exact values
                pred_norm = F.normalize(lune_pred, dim=-1)
                real_norm = F.normalize(lune_features, dim=-1)
                cosine_sim = (pred_norm * real_norm).sum(dim=-1)
                losses['lune_distill'] = (1 - cosine_sim).mean()

            elif lune_distill_mode == "soft":
                # Temperature-scaled MSE (mushier matching)
                temp = 2.0  # Higher = softer
                mse = (lune_pred - lune_features).pow(2).mean(dim=-1)
                losses['lune_distill'] = (mse / temp).mean()

            elif lune_distill_mode == "huber":
                # Huber for distillation too
                losses['lune_distill'] = F.huber_loss(
                    lune_pred, lune_features, delta=1.0
                )

            else:  # "hard" - original MSE
                losses['lune_distill'] = F.mse_loss(lune_pred, lune_features)

        # === Sol Distillation (keeps MSE - small vectors, precision matters) ===
        if expert_info.get('sol'):
            if sol_stats is not None:
                sol_pred_stats = expert_info['sol']['pred_stats']
                losses['sol_stat_distill'] = F.mse_loss(sol_pred_stats, sol_stats)

            if sol_spatial is not None:
                sol_pred_spatial = expert_info['sol']['pred_spatial']
                losses['sol_spatial_distill'] = F.mse_loss(sol_pred_spatial, sol_spatial)

        # === Total ===
        losses['total'] = (
            main_loss +
            lune_weight * losses['lune_distill'] +
            sol_weight * (losses['sol_stat_distill'] + losses['sol_spatial_distill'])
        )

        return losses

    @staticmethod
    def create_img_ids(batch_size: int, height: int, width: int, device: torch.device) -> torch.Tensor:
        """Create image position IDs for RoPE."""
        img_ids = torch.zeros(height * width, 3, device=device)
        for i in range(height):
            for j in range(width):
                idx = i * width + j
                img_ids[idx, 0] = 0
                img_ids[idx, 1] = i
                img_ids[idx, 2] = j
        return img_ids

    @staticmethod
    def create_txt_ids(text_len: int, device: torch.device) -> torch.Tensor:
        """Create text position IDs."""
        txt_ids = torch.zeros(text_len, 3, device=device)
        txt_ids[:, 0] = torch.arange(text_len, device=device)
        return txt_ids

    def count_parameters(self) -> Dict[str, int]:
        """Count parameters by component."""
        counts = {}
        counts['img_in'] = sum(p.numel() for p in self.img_in.parameters())
        counts['txt_in'] = sum(p.numel() for p in self.txt_in.parameters())
        counts['time_in'] = sum(p.numel() for p in self.time_in.parameters())
        counts['vector_in'] = sum(p.numel() for p in self.vector_in.parameters())

        if self.t5_pool is not None:
            counts['t5_pool'] = sum(p.numel() for p in self.t5_pool.parameters()) + 1  # +1 for balance param
        if self.lune_predictor is not None:
            counts['lune_predictor'] = sum(p.numel() for p in self.lune_predictor.parameters())
        if self.sol_prior is not None:
            counts['sol_prior'] = sum(p.numel() for p in self.sol_prior.parameters())
        if self.guidance_in is not None:
            counts['guidance_in'] = sum(p.numel() for p in self.guidance_in.parameters())

        counts['double_blocks'] = sum(p.numel() for p in self.double_blocks.parameters())
        counts['single_blocks'] = sum(p.numel() for p in self.single_blocks.parameters())
        counts['final'] = sum(p.numel() for p in self.final_norm.parameters()) + \
                          sum(p.numel() for p in self.final_linear.parameters())
        counts['total'] = sum(p.numel() for p in self.parameters())
        return counts


# =============================================================================
# Test
# =============================================================================

def test_model():
    """Test TinyFlux-Deep v4.1 with Dual Expert System."""
    print("=" * 60)
    print(f"TinyFlux-Deep v{__version__} - Dual Expert Test")
    print("=" * 60)

    config = TinyFluxConfig(
        use_lune_expert=True,
        use_sol_prior=True,
        lune_expert_dim=1280,
        sol_spatial_size=8,
        sol_geometric_weight=0.7,
        use_t5_vec=True,
        lune_distill_mode="cosine",
        use_huber_loss=True,
        huber_delta=0.1,
    )
    model = TinyFluxDeep(config)

    counts = model.count_parameters()
    print(f"\nConfig:")
    print(f"  hidden_size: {config.hidden_size}")
    print(f"  num_double_layers: {config.num_double_layers}")
    print(f"  num_single_layers: {config.num_single_layers}")
    print(f"  use_lune_expert: {config.use_lune_expert}")
    print(f"  use_sol_prior: {config.use_sol_prior}")
    print(f"  sol_geometric_weight: {config.sol_geometric_weight}")
    print(f"  use_t5_vec: {config.use_t5_vec}")
    print(f"  lune_distill_mode: {config.lune_distill_mode}")
    print(f"  use_huber_loss: {config.use_huber_loss}")

    print(f"\nParameters:")
    for name, count in counts.items():
        print(f"  {name}: {count:,}")

    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    model = model.to(device)

    B, H, W = 2, 64, 64
    L = 77

    hidden_states = torch.randn(B, H * W, config.in_channels, device=device)
    encoder_hidden_states = torch.randn(B, L, config.joint_attention_dim, device=device)
    pooled_projections = torch.randn(B, config.pooled_projection_dim, device=device)
    timestep = torch.rand(B, device=device)
    img_ids = TinyFluxDeep.create_img_ids(B, H, W, device)

    # Expert inputs
    lune_features = torch.randn(B, config.lune_expert_dim, device=device)
    sol_stats = torch.randn(B, 3, device=device)
    sol_spatial = torch.rand(B, config.sol_spatial_size, config.sol_spatial_size, device=device)

    print("\n[Test 1: Training mode with dual experts]")
    model.train()
    with torch.no_grad():
        output, expert_info = model(
            hidden_states=hidden_states,
            encoder_hidden_states=encoder_hidden_states,
            pooled_projections=pooled_projections,
            timestep=timestep,
            img_ids=img_ids,
            lune_features=lune_features,
            sol_stats=sol_stats,
            sol_spatial=sol_spatial,
            return_expert_pred=True,
        )
    print(f"  Output shape: {output.shape}")
    print(f"  Lune used: {expert_info['lune']['expert_used']}")
    print(f"  Sol temperature shape: {expert_info['sol']['temperature'].shape}")
    print(f"  Sol spatial shape: {expert_info['sol']['spatial_importance'].shape}")

    print("\n[Test 2: Inference mode (no expert inputs)]")
    model.eval()
    with torch.no_grad():
        output = model(
            hidden_states=hidden_states,
            encoder_hidden_states=encoder_hidden_states,
            pooled_projections=pooled_projections,
            timestep=timestep,
            img_ids=img_ids,
        )
    print(f"  Output shape: {output.shape}")
    print(f"  Output range: [{output.min():.4f}, {output.max():.4f}]")

    print("\n[Test 3: Loss computation with Huber + Cosine distillation]")
    target = torch.randn_like(output)
    model.train()
    output, expert_info = model(
        hidden_states=hidden_states,
        encoder_hidden_states=encoder_hidden_states,
        pooled_projections=pooled_projections,
        timestep=timestep,
        img_ids=img_ids,
        lune_features=lune_features,
        sol_stats=sol_stats,
        sol_spatial=sol_spatial,
        return_expert_pred=True,
    )
    losses = model.compute_loss(
        output=output,
        target=target,
        expert_info=expert_info,
        lune_features=lune_features,
        sol_stats=sol_stats,
        sol_spatial=sol_spatial,
        lune_weight=0.1,
        sol_weight=0.05,
        use_huber=True,
        huber_delta=0.1,
        lune_distill_mode="cosine",
        spatial_weighting=True,
    )
    print(f"  Main loss (Huber): {losses['main']:.4f}")
    print(f"  Lune distill (cosine): {losses['lune_distill']:.4f}")
    print(f"  Sol stat distill: {losses['sol_stat_distill']:.4f}")
    print(f"  Sol spatial distill: {losses['sol_spatial_distill']:.4f}")
    print(f"  Total loss: {losses['total']:.4f}")

    print("\n[Test 4: Legacy API compatibility]")
    with torch.no_grad():
        output, expert_info = model(
            hidden_states=hidden_states,
            encoder_hidden_states=encoder_hidden_states,
            pooled_projections=pooled_projections,
            timestep=timestep,
            img_ids=img_ids,
            expert_features=lune_features,  # Legacy API
            return_expert_pred=True,
        )
    print(f"  Legacy expert_pred shape: {expert_info['expert_pred'].shape}")
    print(f"  Legacy expert_used: {expert_info['expert_used']}")

    print("\n[Test 5: T5 Enhancement check]")
    if model.t5_pool is not None:
        balance = torch.sigmoid(model.text_balance).item()
        print(f"  T5 pool: enabled")
        print(f"  Text balance (CLIP vs T5): {balance:.2f} / {1-balance:.2f}")
    else:
        print(f"  T5 pool: disabled")

    print("\n[Test 6: Config serialization]")
    config_dict = config.to_dict()
    config_restored = TinyFluxConfig.from_dict(config_dict)
    print(f"  Serialized keys: {len(config_dict)}")
    print(f"  Restored hidden_size: {config_restored.hidden_size}")
    print(f"  Round-trip successful: {config.hidden_size == config_restored.hidden_size}")

    print("\n" + "=" * 60)
    print("✓ All tests passed!")
    print("=" * 60)


#if __name__ == "__main__":
#   test_model()