File size: 29,672 Bytes
048b8bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 |
"""
TinyFlux-Deep with Expert Predictor
Integrates a distillation pathway for SD1.5-flow timestep expertise.
During training: learns to predict expert features from (timestep, CLIP).
During inference: runs standalone, no expert needed.
Based on TinyFlux-Deep: 15 double + 25 single blocks.
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Dict
@dataclass
class TinyFluxDeepConfig:
"""Configuration for TinyFlux-Deep model."""
hidden_size: int = 512
num_attention_heads: int = 4
attention_head_dim: int = 128
in_channels: int = 16
patch_size: int = 1
joint_attention_dim: int = 768
pooled_projection_dim: int = 768
num_double_layers: int = 15
num_single_layers: int = 25
mlp_ratio: float = 4.0
axes_dims_rope: Tuple[int, int, int] = (16, 56, 56)
# Expert predictor config
use_expert_predictor: bool = True
expert_dim: int = 1280 # SD1.5 mid-block dimension
expert_hidden_dim: int = 512
expert_dropout: float = 0.1 # Dropout during training for robustness
# Legacy guidance (disabled when using expert)
guidance_embeds: bool = False
def __post_init__(self):
assert self.num_attention_heads * self.attention_head_dim == self.hidden_size
assert sum(self.axes_dims_rope) == self.attention_head_dim
# =============================================================================
# Normalization
# =============================================================================
class RMSNorm(nn.Module):
"""Root Mean Square Layer Normalization."""
def __init__(self, dim: int, eps: float = 1e-6, elementwise_affine: bool = True):
super().__init__()
self.eps = eps
self.elementwise_affine = elementwise_affine
if elementwise_affine:
self.weight = nn.Parameter(torch.ones(dim))
else:
self.register_parameter('weight', None)
def forward(self, x: torch.Tensor) -> torch.Tensor:
norm = x.float().pow(2).mean(-1, keepdim=True).add(self.eps).rsqrt()
out = (x * norm).type_as(x)
if self.weight is not None:
out = out * self.weight
return out
# =============================================================================
# RoPE - Old format with cached frequency buffers
# =============================================================================
class EmbedND(nn.Module):
"""Original TinyFlux RoPE with cached frequency buffers."""
def __init__(self, theta: float = 10000.0, axes_dim: Tuple[int, int, int] = (16, 56, 56)):
super().__init__()
self.theta = theta
self.axes_dim = axes_dim
for i, dim in enumerate(axes_dim):
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer(f'freqs_{i}', freqs, persistent=True)
def forward(self, ids: torch.Tensor) -> torch.Tensor:
device = ids.device
n_axes = ids.shape[-1]
emb_list = []
for i in range(n_axes):
freqs = getattr(self, f'freqs_{i}').to(device)
pos = ids[:, i].float()
angles = pos.unsqueeze(-1) * freqs.unsqueeze(0)
cos = angles.cos()
sin = angles.sin()
emb = torch.stack([cos, sin], dim=-1).flatten(-2)
emb_list.append(emb)
rope = torch.cat(emb_list, dim=-1)
return rope.unsqueeze(1)
def apply_rotary_emb_old(x: torch.Tensor, freqs_cis: torch.Tensor) -> torch.Tensor:
"""Apply rotary embeddings (old interleaved format)."""
freqs = freqs_cis.squeeze(1)
cos = freqs[:, 0::2].repeat_interleave(2, dim=-1)
sin = freqs[:, 1::2].repeat_interleave(2, dim=-1)
cos = cos[None, None, :, :].to(x.device)
sin = sin[None, None, :, :].to(x.device)
x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1)
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(-2)
return (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
# =============================================================================
# Embeddings
# =============================================================================
class MLPEmbedder(nn.Module):
"""MLP for embedding scalars (timestep)."""
def __init__(self, hidden_size: int):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(256, hidden_size),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
half_dim = 128
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, device=x.device, dtype=x.dtype) * -emb)
emb = x.unsqueeze(-1) * emb.unsqueeze(0)
emb = torch.cat([emb.sin(), emb.cos()], dim=-1)
return self.mlp(emb)
# =============================================================================
# Expert Predictor
# =============================================================================
class ExpertPredictor(nn.Module):
"""
Predicts SD1.5-flow expert features from (timestep_emb, CLIP_pooled).
Training: learns to match real expert features via distillation loss.
Inference: runs standalone, no expert model needed.
The predictor learns:
- What the expert "sees" at each timestep
- How text conditioning modulates that view
- Trajectory shape priors from the expert's knowledge
"""
def __init__(
self,
time_dim: int = 512,
clip_dim: int = 768,
expert_dim: int = 1280,
hidden_dim: int = 512,
output_dim: int = 512,
dropout: float = 0.1,
):
super().__init__()
self.expert_dim = expert_dim
self.dropout = dropout
# Input fusion
self.input_proj = nn.Linear(time_dim + clip_dim, hidden_dim)
# Predictor core - learns expert behavior
self.predictor = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.SiLU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, hidden_dim),
nn.SiLU(),
nn.Linear(hidden_dim, expert_dim),
)
# Project predicted expert features to vec dimension
self.output_proj = nn.Sequential(
nn.LayerNorm(expert_dim),
nn.Linear(expert_dim, output_dim),
)
# Learnable gate for expert influence
self.expert_gate = nn.Parameter(torch.ones(1) * 0.5)
self._init_weights()
def _init_weights(self):
for m in self.modules():
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight, gain=0.5)
if m.bias is not None:
nn.init.zeros_(m.bias)
def forward(
self,
time_emb: torch.Tensor,
clip_pooled: torch.Tensor,
real_expert_features: Optional[torch.Tensor] = None,
force_predictor: bool = False,
) -> Dict[str, torch.Tensor]:
"""
Forward pass.
Args:
time_emb: [B, time_dim] - timestep embedding from time_in
clip_pooled: [B, clip_dim] - pooled CLIP features
real_expert_features: [B, expert_dim] - real expert output (training only)
force_predictor: if True, use predictor even when real features available
Returns:
dict with:
- 'expert_signal': [B, output_dim] - signal to add to vec
- 'expert_pred': [B, expert_dim] - predicted expert features (for loss)
- 'expert_used': str - 'real' or 'predicted'
"""
B = time_emb.shape[0]
device = time_emb.device
# Fuse inputs
combined = torch.cat([time_emb, clip_pooled], dim=-1)
hidden = self.input_proj(combined)
# Predict expert features
expert_pred = self.predictor(hidden)
# Decide which features to use
use_real = (
real_expert_features is not None
and self.training
and not force_predictor
and torch.rand(1).item() > self.dropout # Sometimes use predictor even in training
)
if use_real:
expert_features = real_expert_features
expert_used = 'real'
else:
expert_features = expert_pred
expert_used = 'predicted'
# Project to output dimension with gating
gate = torch.sigmoid(self.expert_gate)
expert_signal = gate * self.output_proj(expert_features)
return {
'expert_signal': expert_signal,
'expert_pred': expert_pred,
'expert_used': expert_used,
}
def compute_distillation_loss(
self,
expert_pred: torch.Tensor,
real_expert_features: torch.Tensor,
) -> torch.Tensor:
"""MSE loss between predicted and real expert features."""
return F.mse_loss(expert_pred, real_expert_features)
# =============================================================================
# AdaLayerNorm
# =============================================================================
class AdaLayerNormZero(nn.Module):
"""AdaLN-Zero for double-stream blocks (6 params)."""
def __init__(self, hidden_size: int):
super().__init__()
self.silu = nn.SiLU()
self.linear = nn.Linear(hidden_size, 6 * hidden_size, bias=True)
self.norm = RMSNorm(hidden_size)
def forward(self, x: torch.Tensor, emb: torch.Tensor):
emb_out = self.linear(self.silu(emb))
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb_out.chunk(6, dim=-1)
x = self.norm(x) * (1 + scale_msa.unsqueeze(1)) + shift_msa.unsqueeze(1)
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
class AdaLayerNormZeroSingle(nn.Module):
"""AdaLN-Zero for single-stream blocks (3 params)."""
def __init__(self, hidden_size: int):
super().__init__()
self.silu = nn.SiLU()
self.linear = nn.Linear(hidden_size, 3 * hidden_size, bias=True)
self.norm = RMSNorm(hidden_size)
def forward(self, x: torch.Tensor, emb: torch.Tensor):
emb_out = self.linear(self.silu(emb))
shift, scale, gate = emb_out.chunk(3, dim=-1)
x = self.norm(x) * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
return x, gate
# =============================================================================
# Attention
# =============================================================================
class Attention(nn.Module):
"""Multi-head attention."""
def __init__(self, hidden_size: int, num_heads: int, head_dim: int, use_bias: bool = False):
super().__init__()
self.num_heads = num_heads
self.head_dim = head_dim
self.scale = head_dim ** -0.5
self.qkv = nn.Linear(hidden_size, 3 * num_heads * head_dim, bias=use_bias)
self.out_proj = nn.Linear(num_heads * head_dim, hidden_size, bias=use_bias)
def forward(self, x: torch.Tensor, rope: Optional[torch.Tensor] = None) -> torch.Tensor:
B, N, _ = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim)
q, k, v = qkv.permute(2, 0, 3, 1, 4)
if rope is not None:
q = apply_rotary_emb_old(q, rope)
k = apply_rotary_emb_old(k, rope)
attn = F.scaled_dot_product_attention(q, k, v)
out = attn.transpose(1, 2).reshape(B, N, -1)
return self.out_proj(out)
class JointAttention(nn.Module):
"""Joint attention for double-stream blocks."""
def __init__(self, hidden_size: int, num_heads: int, head_dim: int, use_bias: bool = False):
super().__init__()
self.num_heads = num_heads
self.head_dim = head_dim
self.scale = head_dim ** -0.5
self.txt_qkv = nn.Linear(hidden_size, 3 * num_heads * head_dim, bias=use_bias)
self.img_qkv = nn.Linear(hidden_size, 3 * num_heads * head_dim, bias=use_bias)
self.txt_out = nn.Linear(num_heads * head_dim, hidden_size, bias=use_bias)
self.img_out = nn.Linear(num_heads * head_dim, hidden_size, bias=use_bias)
def forward(
self,
txt: torch.Tensor,
img: torch.Tensor,
rope: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
B, L, _ = txt.shape
_, N, _ = img.shape
txt_qkv = self.txt_qkv(txt).reshape(B, L, 3, self.num_heads, self.head_dim)
img_qkv = self.img_qkv(img).reshape(B, N, 3, self.num_heads, self.head_dim)
txt_q, txt_k, txt_v = txt_qkv.permute(2, 0, 3, 1, 4)
img_q, img_k, img_v = img_qkv.permute(2, 0, 3, 1, 4)
if rope is not None:
img_q = apply_rotary_emb_old(img_q, rope)
img_k = apply_rotary_emb_old(img_k, rope)
k = torch.cat([txt_k, img_k], dim=2)
v = torch.cat([txt_v, img_v], dim=2)
txt_out = F.scaled_dot_product_attention(txt_q, k, v)
txt_out = txt_out.transpose(1, 2).reshape(B, L, -1)
img_out = F.scaled_dot_product_attention(img_q, k, v)
img_out = img_out.transpose(1, 2).reshape(B, N, -1)
return self.txt_out(txt_out), self.img_out(img_out)
# =============================================================================
# MLP
# =============================================================================
class MLP(nn.Module):
"""Feed-forward network with GELU activation."""
def __init__(self, hidden_size: int, mlp_ratio: float = 4.0):
super().__init__()
mlp_hidden = int(hidden_size * mlp_ratio)
self.fc1 = nn.Linear(hidden_size, mlp_hidden, bias=True)
self.act = nn.GELU(approximate='tanh')
self.fc2 = nn.Linear(mlp_hidden, hidden_size, bias=True)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.fc2(self.act(self.fc1(x)))
# =============================================================================
# Transformer Blocks
# =============================================================================
class DoubleStreamBlock(nn.Module):
"""Double-stream transformer block."""
def __init__(self, config: TinyFluxDeepConfig):
super().__init__()
hidden = config.hidden_size
heads = config.num_attention_heads
head_dim = config.attention_head_dim
self.img_norm1 = AdaLayerNormZero(hidden)
self.txt_norm1 = AdaLayerNormZero(hidden)
self.attn = JointAttention(hidden, heads, head_dim, use_bias=False)
self.img_norm2 = RMSNorm(hidden)
self.txt_norm2 = RMSNorm(hidden)
self.img_mlp = MLP(hidden, config.mlp_ratio)
self.txt_mlp = MLP(hidden, config.mlp_ratio)
def forward(
self,
txt: torch.Tensor,
img: torch.Tensor,
vec: torch.Tensor,
rope: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
img_normed, img_gate_msa, img_shift_mlp, img_scale_mlp, img_gate_mlp = self.img_norm1(img, vec)
txt_normed, txt_gate_msa, txt_shift_mlp, txt_scale_mlp, txt_gate_mlp = self.txt_norm1(txt, vec)
txt_attn_out, img_attn_out = self.attn(txt_normed, img_normed, rope)
txt = txt + txt_gate_msa.unsqueeze(1) * txt_attn_out
img = img + img_gate_msa.unsqueeze(1) * img_attn_out
txt_mlp_in = self.txt_norm2(txt) * (1 + txt_scale_mlp.unsqueeze(1)) + txt_shift_mlp.unsqueeze(1)
img_mlp_in = self.img_norm2(img) * (1 + img_scale_mlp.unsqueeze(1)) + img_shift_mlp.unsqueeze(1)
txt = txt + txt_gate_mlp.unsqueeze(1) * self.txt_mlp(txt_mlp_in)
img = img + img_gate_mlp.unsqueeze(1) * self.img_mlp(img_mlp_in)
return txt, img
class SingleStreamBlock(nn.Module):
"""Single-stream transformer block."""
def __init__(self, config: TinyFluxDeepConfig):
super().__init__()
hidden = config.hidden_size
heads = config.num_attention_heads
head_dim = config.attention_head_dim
self.norm = AdaLayerNormZeroSingle(hidden)
self.attn = Attention(hidden, heads, head_dim, use_bias=False)
self.mlp = MLP(hidden, config.mlp_ratio)
self.norm2 = RMSNorm(hidden)
def forward(
self,
txt: torch.Tensor,
img: torch.Tensor,
vec: torch.Tensor,
rope: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
L = txt.shape[1]
x = torch.cat([txt, img], dim=1)
x_normed, gate = self.norm(x, vec)
x = x + gate.unsqueeze(1) * self.attn(x_normed, rope)
x = x + self.mlp(self.norm2(x))
txt, img = x.split([L, x.shape[1] - L], dim=1)
return txt, img
# =============================================================================
# Main Model
# =============================================================================
class TinyFluxDeep(nn.Module):
"""
TinyFlux-Deep with Expert Predictor.
The expert predictor learns to emulate SD1.5-flow's timestep expertise,
allowing the model to benefit from trajectory priors without requiring
the expert model at inference time.
"""
def __init__(self, config: Optional[TinyFluxDeepConfig] = None):
super().__init__()
self.config = config or TinyFluxDeepConfig()
cfg = self.config
# Input projections
self.img_in = nn.Linear(cfg.in_channels, cfg.hidden_size, bias=True)
self.txt_in = nn.Linear(cfg.joint_attention_dim, cfg.hidden_size, bias=True)
# Conditioning
self.time_in = MLPEmbedder(cfg.hidden_size)
self.vector_in = nn.Sequential(
nn.SiLU(),
nn.Linear(cfg.pooled_projection_dim, cfg.hidden_size, bias=True)
)
# Expert predictor (replaces guidance_in)
if cfg.use_expert_predictor:
self.expert_predictor = ExpertPredictor(
time_dim=cfg.hidden_size,
clip_dim=cfg.pooled_projection_dim,
expert_dim=cfg.expert_dim,
hidden_dim=cfg.expert_hidden_dim,
output_dim=cfg.hidden_size,
dropout=cfg.expert_dropout,
)
else:
self.expert_predictor = None
# Legacy guidance (for backward compat / comparison)
if cfg.guidance_embeds:
self.guidance_in = MLPEmbedder(cfg.hidden_size)
else:
self.guidance_in = None
# RoPE
self.rope = EmbedND(theta=10000.0, axes_dim=cfg.axes_dims_rope)
# Transformer blocks
self.double_blocks = nn.ModuleList([
DoubleStreamBlock(cfg) for _ in range(cfg.num_double_layers)
])
self.single_blocks = nn.ModuleList([
SingleStreamBlock(cfg) for _ in range(cfg.num_single_layers)
])
# Output
self.final_norm = RMSNorm(cfg.hidden_size)
self.final_linear = nn.Linear(cfg.hidden_size, cfg.in_channels, bias=True)
self._init_weights()
def _init_weights(self):
def _init(module):
if isinstance(module, nn.Linear):
nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.zeros_(module.bias)
self.apply(_init)
nn.init.zeros_(self.final_linear.weight)
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
pooled_projections: torch.Tensor,
timestep: torch.Tensor,
img_ids: torch.Tensor,
txt_ids: Optional[torch.Tensor] = None,
guidance: Optional[torch.Tensor] = None,
expert_features: Optional[torch.Tensor] = None,
return_expert_pred: bool = False,
) -> torch.Tensor:
"""
Forward pass.
Args:
hidden_states: [B, N, C] - image latents
encoder_hidden_states: [B, L, D] - T5 text embeddings
pooled_projections: [B, D] - CLIP pooled features
timestep: [B] - diffusion timestep
img_ids: [N, 3] or [B, N, 3] - image position IDs
txt_ids: [L, 3] or [B, L, 3] - text position IDs (optional)
guidance: [B] - legacy guidance scale (if guidance_embeds=True)
expert_features: [B, 1280] - real expert features (training only)
return_expert_pred: if True, return (output, expert_info) tuple
Returns:
output: [B, N, C] - predicted velocity
expert_info: dict (if return_expert_pred=True)
"""
B = hidden_states.shape[0]
L = encoder_hidden_states.shape[1]
N = hidden_states.shape[1]
# Input projections
img = self.img_in(hidden_states)
txt = self.txt_in(encoder_hidden_states)
# Conditioning: time + pooled text
time_emb = self.time_in(timestep)
vec = time_emb + self.vector_in(pooled_projections)
# Expert predictor (third stream)
expert_info = None
if self.expert_predictor is not None:
expert_out = self.expert_predictor(
time_emb=time_emb,
clip_pooled=pooled_projections,
real_expert_features=expert_features,
)
vec = vec + expert_out['expert_signal']
expert_info = expert_out
# Legacy guidance (fallback)
elif self.guidance_in is not None and guidance is not None:
vec = vec + self.guidance_in(guidance)
# Handle img_ids shape
if img_ids.ndim == 3:
img_ids = img_ids[0]
img_rope = self.rope(img_ids)
# Double-stream blocks
for block in self.double_blocks:
txt, img = block(txt, img, vec, img_rope)
# Build full sequence RoPE for single-stream
if txt_ids is None:
txt_ids = torch.zeros(L, 3, device=img_ids.device, dtype=img_ids.dtype)
elif txt_ids.ndim == 3:
txt_ids = txt_ids[0]
all_ids = torch.cat([txt_ids, img_ids], dim=0)
full_rope = self.rope(all_ids)
# Single-stream blocks
for block in self.single_blocks:
txt, img = block(txt, img, vec, full_rope)
# Output
img = self.final_norm(img)
output = self.final_linear(img)
if return_expert_pred:
return output, expert_info
return output
def compute_loss(
self,
output: torch.Tensor,
target: torch.Tensor,
expert_pred: Optional[torch.Tensor] = None,
real_expert_features: Optional[torch.Tensor] = None,
distill_weight: float = 0.1,
) -> Dict[str, torch.Tensor]:
"""
Compute combined loss.
Args:
output: model prediction
target: flow matching target (data - noise)
expert_pred: predicted expert features
real_expert_features: real expert features
distill_weight: weight for distillation loss
Returns:
dict with 'total', 'main', 'distill' losses
"""
# Main flow matching loss
main_loss = F.mse_loss(output, target)
losses = {
'main': main_loss,
'distill': torch.tensor(0.0, device=output.device),
'total': main_loss,
}
# Distillation loss
if expert_pred is not None and real_expert_features is not None:
distill_loss = self.expert_predictor.compute_distillation_loss(
expert_pred, real_expert_features
)
losses['distill'] = distill_loss
losses['total'] = main_loss + distill_weight * distill_loss
return losses
@staticmethod
def create_img_ids(batch_size: int, height: int, width: int, device: torch.device) -> torch.Tensor:
"""Create image position IDs for RoPE."""
img_ids = torch.zeros(height * width, 3, device=device)
for i in range(height):
for j in range(width):
idx = i * width + j
img_ids[idx, 0] = 0
img_ids[idx, 1] = i
img_ids[idx, 2] = j
return img_ids
@staticmethod
def create_txt_ids(text_len: int, device: torch.device) -> torch.Tensor:
"""Create text position IDs."""
txt_ids = torch.zeros(text_len, 3, device=device)
txt_ids[:, 0] = torch.arange(text_len, device=device)
return txt_ids
def count_parameters(self) -> Dict[str, int]:
"""Count parameters by component."""
counts = {}
counts['img_in'] = sum(p.numel() for p in self.img_in.parameters())
counts['txt_in'] = sum(p.numel() for p in self.txt_in.parameters())
counts['time_in'] = sum(p.numel() for p in self.time_in.parameters())
counts['vector_in'] = sum(p.numel() for p in self.vector_in.parameters())
if self.expert_predictor is not None:
counts['expert_predictor'] = sum(p.numel() for p in self.expert_predictor.parameters())
if self.guidance_in is not None:
counts['guidance_in'] = sum(p.numel() for p in self.guidance_in.parameters())
counts['double_blocks'] = sum(p.numel() for p in self.double_blocks.parameters())
counts['single_blocks'] = sum(p.numel() for p in self.single_blocks.parameters())
counts['final'] = sum(p.numel() for p in self.final_norm.parameters()) + \
sum(p.numel() for p in self.final_linear.parameters())
counts['total'] = sum(p.numel() for p in self.parameters())
return counts
# =============================================================================
# Test
# =============================================================================
def test_model():
"""Test TinyFlux-Deep with Expert Predictor."""
print("=" * 60)
print("TinyFlux-Deep + Expert Predictor Test")
print("=" * 60)
config = TinyFluxDeepConfig(
use_expert_predictor=True,
expert_dim=1280,
expert_hidden_dim=512,
guidance_embeds=False,
)
model = TinyFluxDeep(config)
counts = model.count_parameters()
print(f"\nConfig:")
print(f" hidden_size: {config.hidden_size}")
print(f" num_double_layers: {config.num_double_layers}")
print(f" num_single_layers: {config.num_single_layers}")
print(f" expert_dim: {config.expert_dim}")
print(f" use_expert_predictor: {config.use_expert_predictor}")
print(f"\nParameters:")
for name, count in counts.items():
print(f" {name}: {count:,}")
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = model.to(device)
B, H, W = 2, 64, 64
L = 77
hidden_states = torch.randn(B, H * W, config.in_channels, device=device)
encoder_hidden_states = torch.randn(B, L, config.joint_attention_dim, device=device)
pooled_projections = torch.randn(B, config.pooled_projection_dim, device=device)
timestep = torch.rand(B, device=device)
img_ids = TinyFluxDeep.create_img_ids(B, H, W, device)
txt_ids = TinyFluxDeep.create_txt_ids(L, device)
# Simulated expert features
expert_features = torch.randn(B, config.expert_dim, device=device)
print("\n[Test 1: Training mode with expert features]")
model.train()
with torch.no_grad():
output, expert_info = model(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
pooled_projections=pooled_projections,
timestep=timestep,
img_ids=img_ids,
txt_ids=txt_ids,
expert_features=expert_features,
return_expert_pred=True,
)
print(f" Output shape: {output.shape}")
print(f" Expert used: {expert_info['expert_used']}")
print(f" Expert pred shape: {expert_info['expert_pred'].shape}")
print("\n[Test 2: Inference mode (no expert)]")
model.eval()
with torch.no_grad():
output = model(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
pooled_projections=pooled_projections,
timestep=timestep,
img_ids=img_ids,
txt_ids=txt_ids,
expert_features=None, # No expert at inference
)
print(f" Output shape: {output.shape}")
print(f" Output range: [{output.min():.4f}, {output.max():.4f}]")
print("\n[Test 3: Loss computation]")
target = torch.randn_like(output)
model.train()
output, expert_info = model(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
pooled_projections=pooled_projections,
timestep=timestep,
img_ids=img_ids,
txt_ids=txt_ids,
expert_features=expert_features,
return_expert_pred=True,
)
losses = model.compute_loss(
output=output,
target=target,
expert_pred=expert_info['expert_pred'],
real_expert_features=expert_features,
distill_weight=0.1,
)
print(f" Main loss: {losses['main']:.4f}")
print(f" Distill loss: {losses['distill']:.4f}")
print(f" Total loss: {losses['total']:.4f}")
print("\n" + "=" * 60)
print("✓ All tests passed!")
print("=" * 60)
if __name__ == "__main__":
test_model() |