File size: 20,963 Bytes
cacfc43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
"""
TinyFlux-Deep: Deeper variant with 15 double + 25 single blocks.

Config derived from checkpoint step_285625.safetensors:
  - hidden_size: 512
  - num_attention_heads: 4
  - attention_head_dim: 128
  - num_double_layers: 15
  - num_single_layers: 25
  - Uses biases in MLP
  - Old RoPE format with cached freqs buffers
"""

import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from dataclasses import dataclass
from typing import Optional, Tuple, List


@dataclass
class TinyFluxDeepConfig:
    """Configuration for TinyFlux-Deep model."""
    hidden_size: int = 512
    num_attention_heads: int = 4
    attention_head_dim: int = 128

    in_channels: int = 16
    patch_size: int = 1

    joint_attention_dim: int = 768
    pooled_projection_dim: int = 768

    num_double_layers: int = 15
    num_single_layers: int = 25

    mlp_ratio: float = 4.0
    axes_dims_rope: Tuple[int, int, int] = (16, 56, 56)
    guidance_embeds: bool = True

    def __post_init__(self):
        assert self.num_attention_heads * self.attention_head_dim == self.hidden_size
        assert sum(self.axes_dims_rope) == self.attention_head_dim


# =============================================================================
# Normalization
# =============================================================================

class RMSNorm(nn.Module):
    """Root Mean Square Layer Normalization."""

    def __init__(self, dim: int, eps: float = 1e-6, elementwise_affine: bool = True):
        super().__init__()
        self.eps = eps
        self.elementwise_affine = elementwise_affine
        if elementwise_affine:
            self.weight = nn.Parameter(torch.ones(dim))
        else:
            self.register_parameter('weight', None)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        norm = x.float().pow(2).mean(-1, keepdim=True).add(self.eps).rsqrt()
        out = (x * norm).type_as(x)
        if self.weight is not None:
            out = out * self.weight
        return out


# =============================================================================
# RoPE - Old format with cached frequency buffers (checkpoint compatible)
# =============================================================================

class EmbedND(nn.Module):
    """
    Original TinyFlux RoPE with cached frequency buffers.
    Matches checkpoint format with rope.freqs_0, rope.freqs_1, rope.freqs_2
    """

    def __init__(self, theta: float = 10000.0, axes_dim: Tuple[int, int, int] = (16, 56, 56)):
        super().__init__()
        self.theta = theta
        self.axes_dim = axes_dim
        
        # Register frequency buffers (matches checkpoint keys rope.freqs_*)
        for i, dim in enumerate(axes_dim):
            freqs = 1.0 / (theta ** (torch.arange(0, dim, 2).float() / dim))
            self.register_buffer(f'freqs_{i}', freqs, persistent=True)

    def forward(self, ids: torch.Tensor) -> torch.Tensor:
        """
        Args:
            ids: (N, 3) position indices [temporal, height, width]
        Returns:
            rope: (N, 1, head_dim) interleaved [cos, sin, cos, sin, ...]
        """
        device = ids.device
        n_axes = ids.shape[-1]
        emb_list = []

        for i in range(n_axes):
            freqs = getattr(self, f'freqs_{i}').to(device)
            pos = ids[:, i].float()
            angles = pos.unsqueeze(-1) * freqs.unsqueeze(0)  # (N, dim/2)
            
            # Interleave cos and sin
            cos = angles.cos()
            sin = angles.sin()
            emb = torch.stack([cos, sin], dim=-1).flatten(-2)  # (N, dim)
            emb_list.append(emb)

        rope = torch.cat(emb_list, dim=-1)  # (N, head_dim)
        return rope.unsqueeze(1)  # (N, 1, head_dim)


def apply_rotary_emb_old(
    x: torch.Tensor,
    freqs_cis: torch.Tensor,
) -> torch.Tensor:
    """
    Apply rotary embeddings (old interleaved format).
    
    Args:
        x: (B, H, N, D) query or key tensor
        freqs_cis: (N, 1, D) interleaved [cos0, sin0, cos1, sin1, ...]
    Returns:
        Rotated tensor of same shape
    """
    # freqs_cis is (N, 1, D) with interleaved cos/sin
    freqs = freqs_cis.squeeze(1)  # (N, D)
    
    # Split interleaved cos/sin
    cos = freqs[:, 0::2].repeat_interleave(2, dim=-1)  # (N, D)
    sin = freqs[:, 1::2].repeat_interleave(2, dim=-1)  # (N, D)
    
    cos = cos[None, None, :, :].to(x.device)  # (1, 1, N, D)
    sin = sin[None, None, :, :].to(x.device)

    # Split into real/imag pairs and rotate
    x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1)
    x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(-2)

    return (x.float() * cos + x_rotated.float() * sin).to(x.dtype)


# =============================================================================
# Embeddings
# =============================================================================

class MLPEmbedder(nn.Module):
    """MLP for embedding scalars (timestep, guidance)."""

    def __init__(self, hidden_size: int):
        super().__init__()
        self.mlp = nn.Sequential(
            nn.Linear(256, hidden_size),
            nn.SiLU(),
            nn.Linear(hidden_size, hidden_size),
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        half_dim = 128
        emb = math.log(10000) / (half_dim - 1)
        emb = torch.exp(torch.arange(half_dim, device=x.device, dtype=x.dtype) * -emb)
        emb = x.unsqueeze(-1) * emb.unsqueeze(0)
        emb = torch.cat([emb.sin(), emb.cos()], dim=-1)
        return self.mlp(emb)


# =============================================================================
# AdaLayerNorm
# =============================================================================

class AdaLayerNormZero(nn.Module):
    """AdaLN-Zero for double-stream blocks (6 params)."""

    def __init__(self, hidden_size: int):
        super().__init__()
        self.silu = nn.SiLU()
        self.linear = nn.Linear(hidden_size, 6 * hidden_size, bias=True)
        self.norm = RMSNorm(hidden_size)

    def forward(self, x: torch.Tensor, emb: torch.Tensor):
        emb_out = self.linear(self.silu(emb))
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb_out.chunk(6, dim=-1)
        x = self.norm(x) * (1 + scale_msa.unsqueeze(1)) + shift_msa.unsqueeze(1)
        return x, gate_msa, shift_mlp, scale_mlp, gate_mlp


class AdaLayerNormZeroSingle(nn.Module):
    """AdaLN-Zero for single-stream blocks (3 params)."""

    def __init__(self, hidden_size: int):
        super().__init__()
        self.silu = nn.SiLU()
        self.linear = nn.Linear(hidden_size, 3 * hidden_size, bias=True)
        self.norm = RMSNorm(hidden_size)

    def forward(self, x: torch.Tensor, emb: torch.Tensor):
        emb_out = self.linear(self.silu(emb))
        shift, scale, gate = emb_out.chunk(3, dim=-1)
        x = self.norm(x) * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
        return x, gate


# =============================================================================
# Attention (original format - no Q/K norm, matches checkpoint)
# =============================================================================

class Attention(nn.Module):
    """Multi-head attention (original TinyFlux format, no Q/K norm)."""

    def __init__(self, hidden_size: int, num_heads: int, head_dim: int, use_bias: bool = False):
        super().__init__()
        self.num_heads = num_heads
        self.head_dim = head_dim
        self.scale = head_dim ** -0.5

        self.qkv = nn.Linear(hidden_size, 3 * num_heads * head_dim, bias=use_bias)
        self.out_proj = nn.Linear(num_heads * head_dim, hidden_size, bias=use_bias)

    def forward(
        self,
        x: torch.Tensor,
        rope: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        B, N, _ = x.shape

        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim)
        q, k, v = qkv.permute(2, 0, 3, 1, 4)  # 3 x (B, H, N, D)

        # Apply RoPE
        if rope is not None:
            q = apply_rotary_emb_old(q, rope)
            k = apply_rotary_emb_old(k, rope)

        # Scaled dot-product attention
        attn = F.scaled_dot_product_attention(q, k, v)
        out = attn.transpose(1, 2).reshape(B, N, -1)
        return self.out_proj(out)


class JointAttention(nn.Module):
    """Joint attention for double-stream blocks (original format)."""

    def __init__(self, hidden_size: int, num_heads: int, head_dim: int, use_bias: bool = False):
        super().__init__()
        self.num_heads = num_heads
        self.head_dim = head_dim
        self.scale = head_dim ** -0.5

        self.txt_qkv = nn.Linear(hidden_size, 3 * num_heads * head_dim, bias=use_bias)
        self.img_qkv = nn.Linear(hidden_size, 3 * num_heads * head_dim, bias=use_bias)

        self.txt_out = nn.Linear(num_heads * head_dim, hidden_size, bias=use_bias)
        self.img_out = nn.Linear(num_heads * head_dim, hidden_size, bias=use_bias)

    def forward(
        self,
        txt: torch.Tensor,
        img: torch.Tensor,
        rope: Optional[torch.Tensor] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        B, L, _ = txt.shape
        _, N, _ = img.shape

        txt_qkv = self.txt_qkv(txt).reshape(B, L, 3, self.num_heads, self.head_dim)
        img_qkv = self.img_qkv(img).reshape(B, N, 3, self.num_heads, self.head_dim)

        txt_q, txt_k, txt_v = txt_qkv.permute(2, 0, 3, 1, 4)
        img_q, img_k, img_v = img_qkv.permute(2, 0, 3, 1, 4)

        # Apply RoPE to image only
        if rope is not None:
            img_q = apply_rotary_emb_old(img_q, rope)
            img_k = apply_rotary_emb_old(img_k, rope)

        # Concatenate for joint attention
        k = torch.cat([txt_k, img_k], dim=2)
        v = torch.cat([txt_v, img_v], dim=2)

        txt_out = F.scaled_dot_product_attention(txt_q, k, v)
        txt_out = txt_out.transpose(1, 2).reshape(B, L, -1)

        img_out = F.scaled_dot_product_attention(img_q, k, v)
        img_out = img_out.transpose(1, 2).reshape(B, N, -1)

        return self.txt_out(txt_out), self.img_out(img_out)


# =============================================================================
# MLP (with bias - matches checkpoint)
# =============================================================================

class MLP(nn.Module):
    """Feed-forward network with GELU activation and biases."""

    def __init__(self, hidden_size: int, mlp_ratio: float = 4.0):
        super().__init__()
        mlp_hidden = int(hidden_size * mlp_ratio)
        self.fc1 = nn.Linear(hidden_size, mlp_hidden, bias=True)  # bias=True for checkpoint compat
        self.act = nn.GELU(approximate='tanh')
        self.fc2 = nn.Linear(mlp_hidden, hidden_size, bias=True)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.fc2(self.act(self.fc1(x)))


# =============================================================================
# Transformer Blocks
# =============================================================================

class DoubleStreamBlock(nn.Module):
    """Double-stream transformer block."""

    def __init__(self, config: TinyFluxDeepConfig):
        super().__init__()
        hidden = config.hidden_size
        heads = config.num_attention_heads
        head_dim = config.attention_head_dim

        self.img_norm1 = AdaLayerNormZero(hidden)
        self.txt_norm1 = AdaLayerNormZero(hidden)

        self.attn = JointAttention(hidden, heads, head_dim, use_bias=False)

        self.img_norm2 = RMSNorm(hidden)
        self.txt_norm2 = RMSNorm(hidden)

        self.img_mlp = MLP(hidden, config.mlp_ratio)
        self.txt_mlp = MLP(hidden, config.mlp_ratio)

    def forward(
        self,
        txt: torch.Tensor,
        img: torch.Tensor,
        vec: torch.Tensor,
        rope: Optional[torch.Tensor] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        img_normed, img_gate_msa, img_shift_mlp, img_scale_mlp, img_gate_mlp = self.img_norm1(img, vec)
        txt_normed, txt_gate_msa, txt_shift_mlp, txt_scale_mlp, txt_gate_mlp = self.txt_norm1(txt, vec)

        txt_attn_out, img_attn_out = self.attn(txt_normed, img_normed, rope)

        txt = txt + txt_gate_msa.unsqueeze(1) * txt_attn_out
        img = img + img_gate_msa.unsqueeze(1) * img_attn_out

        txt_mlp_in = self.txt_norm2(txt) * (1 + txt_scale_mlp.unsqueeze(1)) + txt_shift_mlp.unsqueeze(1)
        img_mlp_in = self.img_norm2(img) * (1 + img_scale_mlp.unsqueeze(1)) + img_shift_mlp.unsqueeze(1)

        txt = txt + txt_gate_mlp.unsqueeze(1) * self.txt_mlp(txt_mlp_in)
        img = img + img_gate_mlp.unsqueeze(1) * self.img_mlp(img_mlp_in)

        return txt, img


class SingleStreamBlock(nn.Module):
    """Single-stream transformer block."""

    def __init__(self, config: TinyFluxDeepConfig):
        super().__init__()
        hidden = config.hidden_size
        heads = config.num_attention_heads
        head_dim = config.attention_head_dim

        self.norm = AdaLayerNormZeroSingle(hidden)
        self.attn = Attention(hidden, heads, head_dim, use_bias=False)
        self.mlp = MLP(hidden, config.mlp_ratio)
        self.norm2 = RMSNorm(hidden)

    def forward(
        self,
        txt: torch.Tensor,
        img: torch.Tensor,
        vec: torch.Tensor,
        rope: Optional[torch.Tensor] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        L = txt.shape[1]

        x = torch.cat([txt, img], dim=1)

        x_normed, gate = self.norm(x, vec)
        x = x + gate.unsqueeze(1) * self.attn(x_normed, rope)
        x = x + self.mlp(self.norm2(x))

        txt, img = x.split([L, x.shape[1] - L], dim=1)
        return txt, img


# =============================================================================
# Main Model
# =============================================================================

class TinyFluxDeep(nn.Module):
    """TinyFlux-Deep: 15 double + 25 single blocks."""

    def __init__(self, config: Optional[TinyFluxDeepConfig] = None):
        super().__init__()
        self.config = config or TinyFluxDeepConfig()
        cfg = self.config

        # Input projections (with bias to match checkpoint)
        self.img_in = nn.Linear(cfg.in_channels, cfg.hidden_size, bias=True)
        self.txt_in = nn.Linear(cfg.joint_attention_dim, cfg.hidden_size, bias=True)

        # Conditioning
        self.time_in = MLPEmbedder(cfg.hidden_size)
        self.vector_in = nn.Sequential(
            nn.SiLU(),
            nn.Linear(cfg.pooled_projection_dim, cfg.hidden_size, bias=True)
        )
        if cfg.guidance_embeds:
            self.guidance_in = MLPEmbedder(cfg.hidden_size)

        # RoPE (old format with cached freqs)
        self.rope = EmbedND(theta=10000.0, axes_dim=cfg.axes_dims_rope)

        # Transformer blocks
        self.double_blocks = nn.ModuleList([
            DoubleStreamBlock(cfg) for _ in range(cfg.num_double_layers)
        ])
        self.single_blocks = nn.ModuleList([
            SingleStreamBlock(cfg) for _ in range(cfg.num_single_layers)
        ])

        # Output
        self.final_norm = RMSNorm(cfg.hidden_size)
        self.final_linear = nn.Linear(cfg.hidden_size, cfg.in_channels, bias=True)

        self._init_weights()

    def _init_weights(self):
        def _init(module):
            if isinstance(module, nn.Linear):
                nn.init.xavier_uniform_(module.weight)
                if module.bias is not None:
                    nn.init.zeros_(module.bias)
        self.apply(_init)
        nn.init.zeros_(self.final_linear.weight)

    def forward(
        self,
        hidden_states: torch.Tensor,
        encoder_hidden_states: torch.Tensor,
        pooled_projections: torch.Tensor,
        timestep: torch.Tensor,
        img_ids: torch.Tensor,
        txt_ids: Optional[torch.Tensor] = None,
        guidance: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        B = hidden_states.shape[0]
        L = encoder_hidden_states.shape[1]
        N = hidden_states.shape[1]

        # Input projections
        img = self.img_in(hidden_states)
        txt = self.txt_in(encoder_hidden_states)

        # Conditioning
        vec = self.time_in(timestep)
        vec = vec + self.vector_in(pooled_projections)
        if self.config.guidance_embeds and guidance is not None:
            vec = vec + self.guidance_in(guidance)

        # Handle img_ids shape
        if img_ids.ndim == 3:
            img_ids = img_ids[0]  # (N, 3)

        # Compute RoPE for image positions
        img_rope = self.rope(img_ids)  # (N, 1, head_dim)

        # Double-stream blocks
        for block in self.double_blocks:
            txt, img = block(txt, img, vec, img_rope)

        # Build full sequence RoPE for single-stream
        if txt_ids is None:
            txt_ids = torch.zeros(L, 3, device=img_ids.device, dtype=img_ids.dtype)
        elif txt_ids.ndim == 3:
            txt_ids = txt_ids[0]

        all_ids = torch.cat([txt_ids, img_ids], dim=0)
        full_rope = self.rope(all_ids)

        # Single-stream blocks
        for block in self.single_blocks:
            txt, img = block(txt, img, vec, full_rope)

        # Output
        img = self.final_norm(img)
        img = self.final_linear(img)

        return img

    @staticmethod
    def create_img_ids(batch_size: int, height: int, width: int, device: torch.device) -> torch.Tensor:
        """Create image position IDs for RoPE."""
        img_ids = torch.zeros(height * width, 3, device=device)
        for i in range(height):
            for j in range(width):
                idx = i * width + j
                img_ids[idx, 0] = 0
                img_ids[idx, 1] = i
                img_ids[idx, 2] = j
        return img_ids

    @staticmethod
    def create_txt_ids(text_len: int, device: torch.device) -> torch.Tensor:
        """Create text position IDs."""
        txt_ids = torch.zeros(text_len, 3, device=device)
        txt_ids[:, 0] = torch.arange(text_len, device=device)
        return txt_ids

    def count_parameters(self) -> dict:
        """Count parameters by component."""
        counts = {}
        counts['img_in'] = sum(p.numel() for p in self.img_in.parameters())
        counts['txt_in'] = sum(p.numel() for p in self.txt_in.parameters())
        counts['time_in'] = sum(p.numel() for p in self.time_in.parameters())
        counts['vector_in'] = sum(p.numel() for p in self.vector_in.parameters())
        if hasattr(self, 'guidance_in'):
            counts['guidance_in'] = sum(p.numel() for p in self.guidance_in.parameters())
        counts['double_blocks'] = sum(p.numel() for p in self.double_blocks.parameters())
        counts['single_blocks'] = sum(p.numel() for p in self.single_blocks.parameters())
        counts['final'] = sum(p.numel() for p in self.final_norm.parameters()) + \
                          sum(p.numel() for p in self.final_linear.parameters())
        counts['total'] = sum(p.numel() for p in self.parameters())
        return counts


# =============================================================================
# Test
# =============================================================================

def test_model():
    """Test TinyFlux-Deep model."""
    print("=" * 60)
    print("TinyFlux-Deep Test")
    print("=" * 60)

    config = TinyFluxDeepConfig()
    model = TinyFluxDeep(config)

    counts = model.count_parameters()
    print(f"\nConfig:")
    print(f"  hidden_size: {config.hidden_size}")
    print(f"  num_attention_heads: {config.num_attention_heads}")
    print(f"  attention_head_dim: {config.attention_head_dim}")
    print(f"  num_double_layers: {config.num_double_layers}")
    print(f"  num_single_layers: {config.num_single_layers}")
    
    print(f"\nParameters:")
    for name, count in counts.items():
        print(f"  {name}: {count:,}")

    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    model = model.to(device)

    B, H, W = 2, 64, 64
    L = 77

    hidden_states = torch.randn(B, H * W, config.in_channels, device=device)
    encoder_hidden_states = torch.randn(B, L, config.joint_attention_dim, device=device)
    pooled_projections = torch.randn(B, config.pooled_projection_dim, device=device)
    timestep = torch.rand(B, device=device)
    img_ids = TinyFluxDeep.create_img_ids(B, H, W, device)
    txt_ids = TinyFluxDeep.create_txt_ids(L, device)
    guidance = torch.ones(B, device=device) * 3.5

    with torch.no_grad():
        output = model(
            hidden_states=hidden_states,
            encoder_hidden_states=encoder_hidden_states,
            pooled_projections=pooled_projections,
            timestep=timestep,
            img_ids=img_ids,
            txt_ids=txt_ids,
            guidance=guidance,
        )

    print(f"\nOutput shape: {output.shape}")
    print(f"Output range: [{output.min():.4f}, {output.max():.4f}]")
    print("\n✓ Forward pass successful!")


if __name__ == "__main__":
    test_model()