File size: 20,963 Bytes
cacfc43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 |
"""
TinyFlux-Deep: Deeper variant with 15 double + 25 single blocks.
Config derived from checkpoint step_285625.safetensors:
- hidden_size: 512
- num_attention_heads: 4
- attention_head_dim: 128
- num_double_layers: 15
- num_single_layers: 25
- Uses biases in MLP
- Old RoPE format with cached freqs buffers
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from dataclasses import dataclass
from typing import Optional, Tuple, List
@dataclass
class TinyFluxDeepConfig:
"""Configuration for TinyFlux-Deep model."""
hidden_size: int = 512
num_attention_heads: int = 4
attention_head_dim: int = 128
in_channels: int = 16
patch_size: int = 1
joint_attention_dim: int = 768
pooled_projection_dim: int = 768
num_double_layers: int = 15
num_single_layers: int = 25
mlp_ratio: float = 4.0
axes_dims_rope: Tuple[int, int, int] = (16, 56, 56)
guidance_embeds: bool = True
def __post_init__(self):
assert self.num_attention_heads * self.attention_head_dim == self.hidden_size
assert sum(self.axes_dims_rope) == self.attention_head_dim
# =============================================================================
# Normalization
# =============================================================================
class RMSNorm(nn.Module):
"""Root Mean Square Layer Normalization."""
def __init__(self, dim: int, eps: float = 1e-6, elementwise_affine: bool = True):
super().__init__()
self.eps = eps
self.elementwise_affine = elementwise_affine
if elementwise_affine:
self.weight = nn.Parameter(torch.ones(dim))
else:
self.register_parameter('weight', None)
def forward(self, x: torch.Tensor) -> torch.Tensor:
norm = x.float().pow(2).mean(-1, keepdim=True).add(self.eps).rsqrt()
out = (x * norm).type_as(x)
if self.weight is not None:
out = out * self.weight
return out
# =============================================================================
# RoPE - Old format with cached frequency buffers (checkpoint compatible)
# =============================================================================
class EmbedND(nn.Module):
"""
Original TinyFlux RoPE with cached frequency buffers.
Matches checkpoint format with rope.freqs_0, rope.freqs_1, rope.freqs_2
"""
def __init__(self, theta: float = 10000.0, axes_dim: Tuple[int, int, int] = (16, 56, 56)):
super().__init__()
self.theta = theta
self.axes_dim = axes_dim
# Register frequency buffers (matches checkpoint keys rope.freqs_*)
for i, dim in enumerate(axes_dim):
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer(f'freqs_{i}', freqs, persistent=True)
def forward(self, ids: torch.Tensor) -> torch.Tensor:
"""
Args:
ids: (N, 3) position indices [temporal, height, width]
Returns:
rope: (N, 1, head_dim) interleaved [cos, sin, cos, sin, ...]
"""
device = ids.device
n_axes = ids.shape[-1]
emb_list = []
for i in range(n_axes):
freqs = getattr(self, f'freqs_{i}').to(device)
pos = ids[:, i].float()
angles = pos.unsqueeze(-1) * freqs.unsqueeze(0) # (N, dim/2)
# Interleave cos and sin
cos = angles.cos()
sin = angles.sin()
emb = torch.stack([cos, sin], dim=-1).flatten(-2) # (N, dim)
emb_list.append(emb)
rope = torch.cat(emb_list, dim=-1) # (N, head_dim)
return rope.unsqueeze(1) # (N, 1, head_dim)
def apply_rotary_emb_old(
x: torch.Tensor,
freqs_cis: torch.Tensor,
) -> torch.Tensor:
"""
Apply rotary embeddings (old interleaved format).
Args:
x: (B, H, N, D) query or key tensor
freqs_cis: (N, 1, D) interleaved [cos0, sin0, cos1, sin1, ...]
Returns:
Rotated tensor of same shape
"""
# freqs_cis is (N, 1, D) with interleaved cos/sin
freqs = freqs_cis.squeeze(1) # (N, D)
# Split interleaved cos/sin
cos = freqs[:, 0::2].repeat_interleave(2, dim=-1) # (N, D)
sin = freqs[:, 1::2].repeat_interleave(2, dim=-1) # (N, D)
cos = cos[None, None, :, :].to(x.device) # (1, 1, N, D)
sin = sin[None, None, :, :].to(x.device)
# Split into real/imag pairs and rotate
x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1)
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(-2)
return (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
# =============================================================================
# Embeddings
# =============================================================================
class MLPEmbedder(nn.Module):
"""MLP for embedding scalars (timestep, guidance)."""
def __init__(self, hidden_size: int):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(256, hidden_size),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
half_dim = 128
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, device=x.device, dtype=x.dtype) * -emb)
emb = x.unsqueeze(-1) * emb.unsqueeze(0)
emb = torch.cat([emb.sin(), emb.cos()], dim=-1)
return self.mlp(emb)
# =============================================================================
# AdaLayerNorm
# =============================================================================
class AdaLayerNormZero(nn.Module):
"""AdaLN-Zero for double-stream blocks (6 params)."""
def __init__(self, hidden_size: int):
super().__init__()
self.silu = nn.SiLU()
self.linear = nn.Linear(hidden_size, 6 * hidden_size, bias=True)
self.norm = RMSNorm(hidden_size)
def forward(self, x: torch.Tensor, emb: torch.Tensor):
emb_out = self.linear(self.silu(emb))
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb_out.chunk(6, dim=-1)
x = self.norm(x) * (1 + scale_msa.unsqueeze(1)) + shift_msa.unsqueeze(1)
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
class AdaLayerNormZeroSingle(nn.Module):
"""AdaLN-Zero for single-stream blocks (3 params)."""
def __init__(self, hidden_size: int):
super().__init__()
self.silu = nn.SiLU()
self.linear = nn.Linear(hidden_size, 3 * hidden_size, bias=True)
self.norm = RMSNorm(hidden_size)
def forward(self, x: torch.Tensor, emb: torch.Tensor):
emb_out = self.linear(self.silu(emb))
shift, scale, gate = emb_out.chunk(3, dim=-1)
x = self.norm(x) * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
return x, gate
# =============================================================================
# Attention (original format - no Q/K norm, matches checkpoint)
# =============================================================================
class Attention(nn.Module):
"""Multi-head attention (original TinyFlux format, no Q/K norm)."""
def __init__(self, hidden_size: int, num_heads: int, head_dim: int, use_bias: bool = False):
super().__init__()
self.num_heads = num_heads
self.head_dim = head_dim
self.scale = head_dim ** -0.5
self.qkv = nn.Linear(hidden_size, 3 * num_heads * head_dim, bias=use_bias)
self.out_proj = nn.Linear(num_heads * head_dim, hidden_size, bias=use_bias)
def forward(
self,
x: torch.Tensor,
rope: Optional[torch.Tensor] = None,
) -> torch.Tensor:
B, N, _ = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim)
q, k, v = qkv.permute(2, 0, 3, 1, 4) # 3 x (B, H, N, D)
# Apply RoPE
if rope is not None:
q = apply_rotary_emb_old(q, rope)
k = apply_rotary_emb_old(k, rope)
# Scaled dot-product attention
attn = F.scaled_dot_product_attention(q, k, v)
out = attn.transpose(1, 2).reshape(B, N, -1)
return self.out_proj(out)
class JointAttention(nn.Module):
"""Joint attention for double-stream blocks (original format)."""
def __init__(self, hidden_size: int, num_heads: int, head_dim: int, use_bias: bool = False):
super().__init__()
self.num_heads = num_heads
self.head_dim = head_dim
self.scale = head_dim ** -0.5
self.txt_qkv = nn.Linear(hidden_size, 3 * num_heads * head_dim, bias=use_bias)
self.img_qkv = nn.Linear(hidden_size, 3 * num_heads * head_dim, bias=use_bias)
self.txt_out = nn.Linear(num_heads * head_dim, hidden_size, bias=use_bias)
self.img_out = nn.Linear(num_heads * head_dim, hidden_size, bias=use_bias)
def forward(
self,
txt: torch.Tensor,
img: torch.Tensor,
rope: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
B, L, _ = txt.shape
_, N, _ = img.shape
txt_qkv = self.txt_qkv(txt).reshape(B, L, 3, self.num_heads, self.head_dim)
img_qkv = self.img_qkv(img).reshape(B, N, 3, self.num_heads, self.head_dim)
txt_q, txt_k, txt_v = txt_qkv.permute(2, 0, 3, 1, 4)
img_q, img_k, img_v = img_qkv.permute(2, 0, 3, 1, 4)
# Apply RoPE to image only
if rope is not None:
img_q = apply_rotary_emb_old(img_q, rope)
img_k = apply_rotary_emb_old(img_k, rope)
# Concatenate for joint attention
k = torch.cat([txt_k, img_k], dim=2)
v = torch.cat([txt_v, img_v], dim=2)
txt_out = F.scaled_dot_product_attention(txt_q, k, v)
txt_out = txt_out.transpose(1, 2).reshape(B, L, -1)
img_out = F.scaled_dot_product_attention(img_q, k, v)
img_out = img_out.transpose(1, 2).reshape(B, N, -1)
return self.txt_out(txt_out), self.img_out(img_out)
# =============================================================================
# MLP (with bias - matches checkpoint)
# =============================================================================
class MLP(nn.Module):
"""Feed-forward network with GELU activation and biases."""
def __init__(self, hidden_size: int, mlp_ratio: float = 4.0):
super().__init__()
mlp_hidden = int(hidden_size * mlp_ratio)
self.fc1 = nn.Linear(hidden_size, mlp_hidden, bias=True) # bias=True for checkpoint compat
self.act = nn.GELU(approximate='tanh')
self.fc2 = nn.Linear(mlp_hidden, hidden_size, bias=True)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.fc2(self.act(self.fc1(x)))
# =============================================================================
# Transformer Blocks
# =============================================================================
class DoubleStreamBlock(nn.Module):
"""Double-stream transformer block."""
def __init__(self, config: TinyFluxDeepConfig):
super().__init__()
hidden = config.hidden_size
heads = config.num_attention_heads
head_dim = config.attention_head_dim
self.img_norm1 = AdaLayerNormZero(hidden)
self.txt_norm1 = AdaLayerNormZero(hidden)
self.attn = JointAttention(hidden, heads, head_dim, use_bias=False)
self.img_norm2 = RMSNorm(hidden)
self.txt_norm2 = RMSNorm(hidden)
self.img_mlp = MLP(hidden, config.mlp_ratio)
self.txt_mlp = MLP(hidden, config.mlp_ratio)
def forward(
self,
txt: torch.Tensor,
img: torch.Tensor,
vec: torch.Tensor,
rope: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
img_normed, img_gate_msa, img_shift_mlp, img_scale_mlp, img_gate_mlp = self.img_norm1(img, vec)
txt_normed, txt_gate_msa, txt_shift_mlp, txt_scale_mlp, txt_gate_mlp = self.txt_norm1(txt, vec)
txt_attn_out, img_attn_out = self.attn(txt_normed, img_normed, rope)
txt = txt + txt_gate_msa.unsqueeze(1) * txt_attn_out
img = img + img_gate_msa.unsqueeze(1) * img_attn_out
txt_mlp_in = self.txt_norm2(txt) * (1 + txt_scale_mlp.unsqueeze(1)) + txt_shift_mlp.unsqueeze(1)
img_mlp_in = self.img_norm2(img) * (1 + img_scale_mlp.unsqueeze(1)) + img_shift_mlp.unsqueeze(1)
txt = txt + txt_gate_mlp.unsqueeze(1) * self.txt_mlp(txt_mlp_in)
img = img + img_gate_mlp.unsqueeze(1) * self.img_mlp(img_mlp_in)
return txt, img
class SingleStreamBlock(nn.Module):
"""Single-stream transformer block."""
def __init__(self, config: TinyFluxDeepConfig):
super().__init__()
hidden = config.hidden_size
heads = config.num_attention_heads
head_dim = config.attention_head_dim
self.norm = AdaLayerNormZeroSingle(hidden)
self.attn = Attention(hidden, heads, head_dim, use_bias=False)
self.mlp = MLP(hidden, config.mlp_ratio)
self.norm2 = RMSNorm(hidden)
def forward(
self,
txt: torch.Tensor,
img: torch.Tensor,
vec: torch.Tensor,
rope: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
L = txt.shape[1]
x = torch.cat([txt, img], dim=1)
x_normed, gate = self.norm(x, vec)
x = x + gate.unsqueeze(1) * self.attn(x_normed, rope)
x = x + self.mlp(self.norm2(x))
txt, img = x.split([L, x.shape[1] - L], dim=1)
return txt, img
# =============================================================================
# Main Model
# =============================================================================
class TinyFluxDeep(nn.Module):
"""TinyFlux-Deep: 15 double + 25 single blocks."""
def __init__(self, config: Optional[TinyFluxDeepConfig] = None):
super().__init__()
self.config = config or TinyFluxDeepConfig()
cfg = self.config
# Input projections (with bias to match checkpoint)
self.img_in = nn.Linear(cfg.in_channels, cfg.hidden_size, bias=True)
self.txt_in = nn.Linear(cfg.joint_attention_dim, cfg.hidden_size, bias=True)
# Conditioning
self.time_in = MLPEmbedder(cfg.hidden_size)
self.vector_in = nn.Sequential(
nn.SiLU(),
nn.Linear(cfg.pooled_projection_dim, cfg.hidden_size, bias=True)
)
if cfg.guidance_embeds:
self.guidance_in = MLPEmbedder(cfg.hidden_size)
# RoPE (old format with cached freqs)
self.rope = EmbedND(theta=10000.0, axes_dim=cfg.axes_dims_rope)
# Transformer blocks
self.double_blocks = nn.ModuleList([
DoubleStreamBlock(cfg) for _ in range(cfg.num_double_layers)
])
self.single_blocks = nn.ModuleList([
SingleStreamBlock(cfg) for _ in range(cfg.num_single_layers)
])
# Output
self.final_norm = RMSNorm(cfg.hidden_size)
self.final_linear = nn.Linear(cfg.hidden_size, cfg.in_channels, bias=True)
self._init_weights()
def _init_weights(self):
def _init(module):
if isinstance(module, nn.Linear):
nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.zeros_(module.bias)
self.apply(_init)
nn.init.zeros_(self.final_linear.weight)
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
pooled_projections: torch.Tensor,
timestep: torch.Tensor,
img_ids: torch.Tensor,
txt_ids: Optional[torch.Tensor] = None,
guidance: Optional[torch.Tensor] = None,
) -> torch.Tensor:
B = hidden_states.shape[0]
L = encoder_hidden_states.shape[1]
N = hidden_states.shape[1]
# Input projections
img = self.img_in(hidden_states)
txt = self.txt_in(encoder_hidden_states)
# Conditioning
vec = self.time_in(timestep)
vec = vec + self.vector_in(pooled_projections)
if self.config.guidance_embeds and guidance is not None:
vec = vec + self.guidance_in(guidance)
# Handle img_ids shape
if img_ids.ndim == 3:
img_ids = img_ids[0] # (N, 3)
# Compute RoPE for image positions
img_rope = self.rope(img_ids) # (N, 1, head_dim)
# Double-stream blocks
for block in self.double_blocks:
txt, img = block(txt, img, vec, img_rope)
# Build full sequence RoPE for single-stream
if txt_ids is None:
txt_ids = torch.zeros(L, 3, device=img_ids.device, dtype=img_ids.dtype)
elif txt_ids.ndim == 3:
txt_ids = txt_ids[0]
all_ids = torch.cat([txt_ids, img_ids], dim=0)
full_rope = self.rope(all_ids)
# Single-stream blocks
for block in self.single_blocks:
txt, img = block(txt, img, vec, full_rope)
# Output
img = self.final_norm(img)
img = self.final_linear(img)
return img
@staticmethod
def create_img_ids(batch_size: int, height: int, width: int, device: torch.device) -> torch.Tensor:
"""Create image position IDs for RoPE."""
img_ids = torch.zeros(height * width, 3, device=device)
for i in range(height):
for j in range(width):
idx = i * width + j
img_ids[idx, 0] = 0
img_ids[idx, 1] = i
img_ids[idx, 2] = j
return img_ids
@staticmethod
def create_txt_ids(text_len: int, device: torch.device) -> torch.Tensor:
"""Create text position IDs."""
txt_ids = torch.zeros(text_len, 3, device=device)
txt_ids[:, 0] = torch.arange(text_len, device=device)
return txt_ids
def count_parameters(self) -> dict:
"""Count parameters by component."""
counts = {}
counts['img_in'] = sum(p.numel() for p in self.img_in.parameters())
counts['txt_in'] = sum(p.numel() for p in self.txt_in.parameters())
counts['time_in'] = sum(p.numel() for p in self.time_in.parameters())
counts['vector_in'] = sum(p.numel() for p in self.vector_in.parameters())
if hasattr(self, 'guidance_in'):
counts['guidance_in'] = sum(p.numel() for p in self.guidance_in.parameters())
counts['double_blocks'] = sum(p.numel() for p in self.double_blocks.parameters())
counts['single_blocks'] = sum(p.numel() for p in self.single_blocks.parameters())
counts['final'] = sum(p.numel() for p in self.final_norm.parameters()) + \
sum(p.numel() for p in self.final_linear.parameters())
counts['total'] = sum(p.numel() for p in self.parameters())
return counts
# =============================================================================
# Test
# =============================================================================
def test_model():
"""Test TinyFlux-Deep model."""
print("=" * 60)
print("TinyFlux-Deep Test")
print("=" * 60)
config = TinyFluxDeepConfig()
model = TinyFluxDeep(config)
counts = model.count_parameters()
print(f"\nConfig:")
print(f" hidden_size: {config.hidden_size}")
print(f" num_attention_heads: {config.num_attention_heads}")
print(f" attention_head_dim: {config.attention_head_dim}")
print(f" num_double_layers: {config.num_double_layers}")
print(f" num_single_layers: {config.num_single_layers}")
print(f"\nParameters:")
for name, count in counts.items():
print(f" {name}: {count:,}")
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = model.to(device)
B, H, W = 2, 64, 64
L = 77
hidden_states = torch.randn(B, H * W, config.in_channels, device=device)
encoder_hidden_states = torch.randn(B, L, config.joint_attention_dim, device=device)
pooled_projections = torch.randn(B, config.pooled_projection_dim, device=device)
timestep = torch.rand(B, device=device)
img_ids = TinyFluxDeep.create_img_ids(B, H, W, device)
txt_ids = TinyFluxDeep.create_txt_ids(L, device)
guidance = torch.ones(B, device=device) * 3.5
with torch.no_grad():
output = model(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
pooled_projections=pooled_projections,
timestep=timestep,
img_ids=img_ids,
txt_ids=txt_ids,
guidance=guidance,
)
print(f"\nOutput shape: {output.shape}")
print(f"Output range: [{output.min():.4f}, {output.max():.4f}]")
print("\n✓ Forward pass successful!")
if __name__ == "__main__":
test_model() |