from sam_encoder import SAMEncoder from sam_decoder import SAMDecoder import cv2 import numpy as np import argparse import os if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--img_path", "-i", type=str, default="../images/test.jpg", help="input image path") parser.add_argument("--output_dir", "-o", type=str, default="./output", help="result path") parser.add_argument("--chip", "-c", type=str, default="650", help="650 or 620E") args = parser.parse_args() encoder = SAMEncoder(f"../ax_model/mobile_sam_encoder_{args.chip}.axmodel") decoder = SAMDecoder(f"../ax_model/mobile_sam_decoder_{args.chip}.axmodel") image = cv2.imread(args.img_path) h, w, _ = image.shape image_embedding, scale = encoder.encode(image) # test.jpg point0 = (910, 641) point1 = (1488, 607) point2 = (579, 704) # truck.jpg # point0 = (500, 375) os.makedirs(args.output_dir, exist_ok=True) for i, point in enumerate([point0, point1, point2]): image_draw = image.copy() output = decoder.decode(image_embedding[0], point = point,scale = scale) idx = output[0].argmax() image_draw = cv2.circle(image_draw, (int(point[0]), int(point[1])), 10, (0,255,0), -1) mask = output[1][:,idx,:,:][0] mask_mat = np.zeros((mask.shape[0], mask.shape[1]), dtype=np.uint8) mask_mat[mask>0] = 255 mask_mat = cv2.resize(mask_mat, (max(w, h),max(w, h)),interpolation=cv2.INTER_LINEAR) mask_mat = mask_mat[:h, :w] cv2.imwrite(f"{args.output_dir}/point_mask_point_{i}.jpg", mask_mat) mask_ovlap = np.zeros((mask_mat.shape[0], mask_mat.shape[1], 3), dtype=np.uint8) mask_ovlap[mask_mat>0] = [0, 255, 0] image_ovlap = cv2.addWeighted(image_draw, 1, mask_ovlap, 0.5, 0) cv2.imwrite(f"{args.output_dir}/point_mask_ovlap_point_{i}.jpg", image_ovlap) # for i in range(4): # mask = output[1][:,i,:,:][0] # mask_mat = np.zeros((mask.shape[0], mask.shape[1], 3), dtype=np.uint8) # mask_mat[mask>0] = 255 # mask_mat = cv2.resize(mask_mat, (max(w, h),max(w, h))) # mask_mat = mask_mat[:h, :w,:] # cv2.imwrite(f"./output_ax/point_mask_{i}.jpg", mask_mat) # box: topleft x, topleft y, width, height # test.jpg box0 = (910 - 160, 641 - 430, 380, 940) box1 = (479, 482, 191, 518) box2 = (1345, 333, 289, 701) box3 = (1, 357, 311, 751) # truck.jpg # box0 = (1375, 550, 1650 - 1375, 800 - 550) # box1 = (75, 275, 1725 - 75, 850 - 275) # box2 = (425, 600, 700 - 425, 875 - 600) # box3 = (1240, 675, 1400 - 1240, 750 - 675) # car.jpg # box0 = (450, 170, 520 - 450, 350 - 170) # box1 = (350, 190, 450 - 350, 350 - 190) # box2 = (500, 170, 580 - 500, 350 - 170) # box3 = (580, 170, 640 - 580, 350 - 170) for i, box in enumerate([box0, box1, box2, box3]): image_draw = image.copy() output = decoder.decode(image_embedding[0], box = box,scale = scale) idx = output[0].argmax() image_draw = cv2.rectangle(image_draw, (int(box[0]), int(box[1])), (int(box[0]+box[2]), int(box[1]+box[3])), (0,255,0), 2) # cv2.imwrite(f"{args.output_dir}/box_image_{i}.jpg", image) mask = output[1][:,idx,:,:][0] mask_mat = np.zeros((mask.shape[0], mask.shape[1]), dtype=np.uint8) mask_mat[mask>0] = 255 mask_mat = cv2.resize(mask_mat, (max(w, h),max(w, h)),interpolation=cv2.INTER_LINEAR) mask_mat = mask_mat[:h, :w] cv2.imwrite(f"{args.output_dir}/box_mask_box_{i}.jpg", mask_mat) mask_ovlap = np.zeros((mask_mat.shape[0], mask_mat.shape[1], 3), dtype=np.uint8) mask_ovlap[mask_mat>0] = [0, 255, 0] image_ovlap = cv2.addWeighted(image_draw, 1, mask_ovlap, 0.5, 0) cv2.imwrite(f"{args.output_dir}/box_mask_ovlap_box_{i}.jpg", image_ovlap) # for i in range(4): # mask = output[1][:,i,:,:][0] # mask_mat = np.zeros((mask.shape[0], mask.shape[1], 3), dtype=np.uint8) # mask_mat[mask>0] = 255 # mask_mat = cv2.resize(mask_mat, (max(w, h),max(w, h))) # mask_mat = mask_mat[:h, :w,:] # cv2.imwrite(f"./output_ax/box_mask_{i}.jpg", mask_mat)